首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
文章研究车-桥耦合系统的非线性振动特性,采用有限分段思想,建立1/4车辆模型和变截面连续梁桥的车-桥耦合振动方程,在MATLAB环境下编制基于Runge-Kutta算法的车-桥耦合振动数值分析程序,得到桥梁跨中位移响应;以某三跨混凝土连续梁桥为算例,分析车桥质量比、车辆速度、车辆弹簧刚度、信噪比4组参数的变化对变截面连续梁桥损伤识别的影响。结果发现:车桥质量比和信噪比较大时,桥梁损伤识别效果较好;较低的行车速度有利于桥梁的损伤识别研究;车辆弹簧刚度的影响非常小,可忽略不计。  相似文献   

2.
文章基于车桥耦合振动分析的基本理论,选用1/4车辆模型,对等截面连续梁桥进行单处裂缝损伤的识别研究。首先计算得到连续梁桥的振型函数,然后利用编写的程序模拟车辆匀速驶过桥梁的过程,求解车桥耦合振动的方程得出车辆及桥梁关键特殊位置的响应。基于该文改进的非线性车桥耦合振动方程求解无损伤和有损伤时桥梁竖向振动响应直接进行损伤识别,无需再进行特殊的信号处理。以某三跨等截面连续梁桥作为研究对象,进行单处裂缝损伤的工况分析。研究结果表明,可以通过桥梁跨中竖向位移出现偏差的位置区间和偏差的大小程度,辅以跨中竖向位移响应的变化规律,判别出裂缝损伤的位置范围以及相对损伤程度。  相似文献   

3.
简支梁车桥耦合振动及其影响因素   总被引:2,自引:0,他引:2  
针对主梁刚度下降对车桥耦合振动响应的影响问题,提出基于ANSYS单一环境下的车桥耦合振动响应数值分析方法.将桥梁与车辆模型独立建于ANSYS环境下,并通过APDL编程语言实现耦合关系,得到振动时程响应曲线,与相关文献对比验证其正确性;并利用该算法研究了当车辆行驶速度、刚度下降段长度、刚度下降比例变化时简支梁桥的车桥耦合振动特性,给出了冲击系数、加速度峰值等参数的三维变化曲面图,分析各参数对车辆过桥时的耦合振动影响.研究结果表明:该算法与传统算法相差小于1%;当简支梁主梁刚度下降时,跨中挠度冲击系数最大值为0.168,跨中弯矩冲击系数最大值为0.239,车辆竖向加速度最大值为0.973,跨中截面竖向加速度最大值为1.354;并且以上参数受到车辆行驶速度的影响程度较大,受主梁刚度降低的影响较小.  相似文献   

4.
采用虚拟激励法建立多点输入相干激励车桥耦合随机振动模型,研究路面不平顺相干函数对车桥耦合系统振动响应的影响.将三轴自卸汽车离散为三维九自由度弹簧-质量-阻尼体系,桥梁离散为板-壳实体单元,考虑路面输入激励的相干性,研究Naryanan相干函数、Dieter相干函数和Zhang相干函数对车桥耦合系统振动响应及频谱特性的影响.研究结果表明:不同的相干函数对位移均方根和加速度均方差的影响效果不同;相干函数仅影响共振能量大小,不改变路面激励与车桥耦合系统的共振频率;研究车桥耦合随机振动响应时,路面激励相干函数对桥梁振动响应的影响可不计,但对车辆振动响应的影响不可忽略.  相似文献   

5.
变速车辆与桥梁的耦合振动及其TMD控制   总被引:8,自引:0,他引:8  
在车辆变速与路面粗糙条件下,推得安装调质阻尼器(TMD)前、后的车桥耦合系统的无量纲运动微分方程.作为其特例,研究了匀变速车辆与路面粗糙弹性支撑桥梁的耦合系统,讨论了车辆的加速度、初速度、弹性支撑刚度以及随机路面粗糙度对桥梁跨中无量纲最大挠度的影响,并对耦合系统发生共振时进行TMD控制.数值计算结果表明,车辆的加速度、初速度、弹性支撑刚度以及随机路面粗糙度对桥梁的影响均很大而不能忽略;TMD明显地减小了共振振幅.  相似文献   

6.
为了分析匀加速行驶车辆与桥梁的相互耦合作用,在重点考虑了移动车辆的牵连惯性力及其行车加速度对桥梁竖向振动作用的条件下,建立了匀加速移动的四自由度车辆模型与桥梁耦合振动微分方程;利用有限元的求解方法,在匀加速移动车辆的初速度和加速度2个运动参数变化情况下,得出了桥梁的动挠度响应规律。数值分析表明:车辆初速度和行车加速度对桥梁动力系数影响较大;随初速度的增大,桥梁动力系数增大;随加速度的增大,桥梁动力系数先增大、后减小,存在一个最值区域。  相似文献   

7.
为研究大跨连续梁桥车桥耦合振动响应,基于结构动力学基本原理,结合桥梁设计规范,建立五轴重卡车辆和大跨连续梁桥动力学方程;通过车桥耦合几何和力学条件,组建车桥耦合时变矩阵,并考虑空间路面不平度影响,通过自编程序,开展敏感参数下大跨连续梁桥动力响应和冲击系数影响研究。结果表明:在各敏感参数下,桥梁冲击系数计算值普遍大于规范值,建议应重点关注敏感参数对大跨连续梁桥的动力响应,相关研究可为此类桥梁安全运营提供参考。  相似文献   

8.
为研究车辆在不同工况下发生跳车对变截面连续梁桥动力响应的影响,文章选用1/4车辆模型,采用D’Alembert原理建立车辆振动平衡方程;基于Euler-Bernoulli梁理论将变截面连续梁划分成多个微段并进行受力分析,建立桥梁振动平衡方程,采用模态坐标法考虑振型的正交性对方程进行简化,与车辆振动方程联立得到车桥耦合振动方程,最终理论推导出跳车冲击过程中的车桥耦合振动平衡方程;利用MATLAB自编程序求解车桥耦合振动方程,得出车桥耦合动力响应。研究表明:当跳车高度不断增加时,桥梁动力响应持续加重,位移最大值逐渐增加;当不同桥跨跨中发生跳车时,跳车跨位移响应最大,距离跳车跨越远,位移响应越小。  相似文献   

9.
为了识别车辆的动态荷载,提出了一种基于长短时记忆网络的方法.该方法以桥梁加速度响应为输入,采用有限的数据集,实现车辆动态荷载的识别.建立了车桥耦合模型进行验证,以60组桥梁加速度响应为输入,以相应的车辆动态荷载为输出,通过训练长短时记忆网络来反演车辆动态荷载,并讨论了环境噪声及路面粗糙度对识别效果的影响.结果表明:测试集的车辆动态荷载识别误差平均值均小于5%;车辆动态荷载识别误差不随噪声水平变化,且平均误差小于5%;车辆动态荷载识别误差随着路面粗糙度等级的增加呈现略微增加的趋势,平均误差小于5%.在不同噪声及粗糙度水平下,长短时记忆网络均可用于车辆动态荷载的识别.  相似文献   

10.
以32 m简支梁桥为例,使用有限元软件SIMPACK和ANSYS分别建立CHR动车模型和32 m简支梁桥模型,进行两款软件的联合仿真,研究列车的通过速度和简支梁桥的刚度对桥梁动力响应的影响。研究结果表明:列车通过速度对桥梁跨中的竖向位移及竖向加速度影响比较大,跨中的竖向位移和竖向加速度均随列车通过速度的增大而增大,列车通过速度对桥梁跨中的横向位移和横向加速度影响较小;桥梁刚度对跨中的竖向位移、竖向加速度、横向位移和横向加速度的影响比较小,工程中在现有基础上增大桥梁刚度对提高桥梁结构的稳定性意义不大;该计算方法可用于车桥耦合振动分析,计算结果可为高速铁路桥梁建设提供依据。  相似文献   

11.
把车辆和桥梁看作两个分离的子系统,分别应用d’Alembert原理和有限元法建立它们的振动微分方程,通过两个子系统之间的位移协调条件和相互作用力相等的原则将车辆和桥梁的振动微分方程耦合起来.利用有限元软件ansys的二次开发APDL语言编写了求解车桥耦合系统振动微分方程的命令流,以路面随机不平顺为激振源,进行了车桥耦合系统动力响应的计算,研究了路面不平顺及车辆参数对桥梁动力响应的影响.计算结果表明,路面等级、车速、车辆悬架刚度、车辆悬架阻尼对桥梁结构动力响应的影响明显;车重、轮胎阻尼、轮胎刚度的影响次之.  相似文献   

12.
采用Newmark直接积分法和龙格库塔法求解了非线性车桥耦合系统的振动响应,并利用加速度响应灵敏度方法对含裂纹梁结构进行分布类型的损伤识别。文中车辆采用含非线性弹簧的半车模型,桥梁被离散为欧拉梁单元,裂纹引起的桥梁损伤模拟为桥梁局部刚度的线性分布的减少。数值算例表明,在5%噪声情况下,加速度响应灵敏度方法依然可以较准确地识别出桥梁损伤的分布情况。  相似文献   

13.
为探究双层六线铁路列车-桥梁系统耦合振动的空间效应,通过数值方法实现了车桥耦合振动的仿真计算,确定了空间影响规律及全桥最不利杆件位置,并应用于疲劳损伤评估.结合实际列车开行频率建立车桥系统仿真模型,获取桥梁变幅应力时程,并基于Miner线性损伤累积理论与S-N曲线进行疲劳损伤分析.结果表明:空间行车工况下车桥动力响应满足规范要求;相较于平面行车,空间行车时车辆动力响应增大,且动车组比货物列车增幅更明显,动车组安全性指标的空间-偏载系数达到3.808;空间行车对桥梁的横向位移影响严重,影响系数达到1.546;空间行车时桥梁各关键杆件的疲劳损伤指数出现不同程度的增幅,最高可达48.21%;桥梁服役期间主桁最不利杆件连接细节处疲劳损伤度为0.509.  相似文献   

14.
为高效求解高速铁路大跨钢箱提篮拱桥车-桥耦合振动特性,并考虑列车系统弹簧阻尼系与轮轨接触的非线性特征,充分利用ANSYS和SIMAPCK软件平台各自优势,提出了一套可高效求解复杂车桥耦合系统的分析方法。该方法利用ANSYS作为前处理,建立大跨钢箱提篮拱桥精细化有限元模型,运行Lanczos法进行模态分析,再利用HBMAT命令提取桥梁关键模态信息作为关键输入文件,而列车与轮轨接触在SIMPACK平台构建。通过SIMAPCK读取ANSYS输入的关键数据文件,建立车桥耦合分析的动力学模型。运用SIMPACK中的有限元接口模块(Flex Modal)构建一个质量可以忽略的虚刚体实现列车与桥梁的耦合。最后,以实测南广(南宁—广州)铁路西江特大桥动力响应数据为分析样本,通过计算值与实测值的对比,验证提出的方法的可靠性。结果表明:基于ANSYS和SIMPACK的联合仿真是开展车-桥耦合振动研究的有效方法;由轨道不平顺或轮对蛇行运动引起的周期性激励可能引发横向共振,而发生竖向共振的可能性较小;桥梁结构横向振幅由于受车辆偏载影响较大,单线行车的横向振幅大于双线行车;受激励频率的影响,竖向舒适度指标和加速度可能不随车速单调递增;脱轨系数、轮重减载率、竖向舒适度指标和加速度受活载导致的竖向振动影响较大,而横向舒适度指标和加速度则受偏载效应影响较大。研究结果可为类似桥梁的动力设计提供参考。  相似文献   

15.
考虑桥梁结构几何非线性,以常见的1/4车辆模型为例,文章建立车辆模型与连续梁桥的车桥耦合振动方程;采用Runge-Kutta法在MATLAB环境下编制公路桥梁车桥耦合振动数值模拟分析程序,对连续梁每跨跨中的位移时程动力响应进行对比分析,提出基于车桥耦合振动位移响应的公路桥梁损伤识别方法;以某变截面连续梁桥为例,进行单损伤工况的实例分析,数值分析结果表明:该文提出的损伤识别方法对单一损伤有较好的识别效果,损伤位置与测点间的距离是影响损伤识别效果的重要指标,两者距离越近,识别的效果越好;靠近支座处的损伤不易被识别,可能会出现错漏的状况。  相似文献   

16.
为了研究地震对车桥系统耦合振动的影响,采用最小二乘法对地震加速度进行校正拟合,消除位移时程因直接对加速度时程积分出现的漂移现象。根据弹性系统动力学总势能不变值原理及形成矩阵的对号入座法则,将轨道不平顺作为系统的自激激励源,地震作为外部激励,建立考虑地震作用的车桥系统耦合振动方程。并以某钢桁梁桥为例,采用计算机模拟的方法,建立列车和桥梁动力分析的有限元模型,研究地震对车桥系统耦合振动的影响。研究结果表明:在地震作用下,桥梁的动力响应主要取决于地震力,横向地震波对车辆与桥梁的横向动力响应具有非常重要的影响;竖向地震波主要影响车桥系统的竖向振动,对横向振动影响很小;但是,竖向地震波对脱轨系数、轮重减载率、车体竖向加速度的影响较显著,因此,在评判桥上列车的运行安全性时必须考虑竖向地震波的影响。  相似文献   

17.
在数值分析软件MATLAB平台上,运用三角级数法将桥面不平顺模拟为具有各态历经的平稳随机过程.根据有限元法建立大跨度斜拉桥分析模型,将车辆模拟为5个自由度的质量一弹簧一阻尼体系,分别建立车辆和桥梁结构的振动微分方程,通过位移协调和力的平衡条件形成车桥系统的耦合振动微分方程.采用Newmark—β法,利用有限元分析软件ANSYS编写了迭代计算的APDL命令流,进行主跨为550m的福建长门大跨度公路斜拉桥的车桥耦合振动分析.计算结果表明:桥梁结构动力响应随桥面状况的恶化而显著增大,随结构阻尼的增大而近似呈线性关系减小.随车重的增加而先增大后减小,在开始阶段,响应迅速增大,而后缓慢减小.  相似文献   

18.
文章选用1/4车辆模型,用单元刚度的减少模拟裂缝损伤,对等截面连续梁桥进行损伤识别研究。利用MATLAB中的Cftool模块拟合离散的振型数据得到振型函数,再利用MATLAB模拟车辆匀速驶过桥梁的过程,求解车桥耦合振动方程,可得车辆与桥梁特殊位置的响应。研究结果表明:通过车体竖向速度响应比无损时增大的位置可以识别桥梁的损伤跨;根据车辆行驶到损伤跨时对应的该跨跨中竖向位移响应与无损时存在偏差的位置,可以识别桥梁存在损伤的范围;通过偏差的大小可以判断损伤的大小。  相似文献   

19.
为了研究移动车辆荷载作用下开裂梁体的裂缝扩展规律,提出了一种基于相互作用积分法与车桥耦合振动分析相结合的裂缝尖端三维动态应力强度因子求解方法.同时,基于复合裂缝的临界断裂曲线提出了评估动力作用下弯剪裂缝扩展性能的参数λ.采用数值模拟方法分析了路面等级、车重、车速、梁体损伤程度和裂缝角度对移动荷载作用下裂缝扩展性能的影响.结果表明:车辆荷载增加、路面等级退化和梁体损伤程度增大均会导致裂缝扩展性能参数变大,其中车辆荷载作用最为明显,车辆行驶速度及裂缝角度对其影响不大;车辆荷载的冲击作用会加大裂缝扩展的风险,车辆荷载较轻和路面退化严重时,其对裂缝扩展性能的动力放大作用非常明显;车辆荷载和梁体损伤程度对裂缝扩展性能参数的耦合作用表现出非线性,随着车辆荷载的增大和梁体损伤程度的增加,裂缝扩展的风险加速增大.  相似文献   

20.
目的研究某一匝道公路曲线连续箱梁桥的空间车桥耦合振动响应问题,分析曲率半径对该类桥型车桥耦合振动的影响,为设计提供参考.方法考虑桥梁阻尼比和桥面平整度的影响,采用通用软件ANSYS模拟桥梁,车辆简化为16自由度模型,再用模态综合法编制了求解公路曲线梁桥车桥耦合方程的MATLAB程序并进行动载试验验证.结果主梁跨中最大位移响应会随着曲率半径的减小而逐渐增大,且当曲率半径R≤120 m时,最大位移响应迅速增大;当曲率半径大于120 m时曲线梁桥的位移冲击系数均小于直线梁桥.结论随着曲率半径的减小,弯矩、扭矩最大冲击系数逐渐增大,而剪力最大冲击系数变化较小;在曲率半径由120 m减小至60 m的过程中,内力相应的最大冲击系数均迅速增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号