首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高原环境下AMT汽车动力性换挡规律分析   总被引:2,自引:2,他引:0  
针对内燃机汽车性能受高原地区海拔高度的影响,在分析海拔高度的改变对发动机性能影响的基础上,建立整车动力传动系统仿真模型,分析高原环境下AMT汽车动力性换挡规律。通过对最佳动力性换挡规律控制参数进行修正,提出了基于不同海拔高度的动力换挡规律制定方法,并进行了仿真验证。仿真结果表明:在高原行驶环境下,采用所提出的高原环境动力性换挡规律,明显改善了AMT汽车在高原环境行驶时的动力性能,提高了汽车高原环境适应能力。  相似文献   

2.
重型矿用汽车多参数动力性换挡规律   总被引:1,自引:0,他引:1  
基于矿用汽车载荷变化大、行驶环境多变、油门变化频繁的特点,依据重载爬坡和轻载下坡的典型工况,制定了重型矿用汽车多参数动力性换挡策略.利用函数叠加法建立康明斯QSL-FR91674型发动机全特性曲线,得到不同油门开度情况下发动机输出转速与输出转矩的表达式.根据发动机输出动力特性,计算得到3550型矿用汽车车速、油门开度和加速度三参数动力性换挡规律.再结合道路状况识别方法、车辆载荷、驾驶员操作意图,针对轻载下坡和重载爬坡工况,修正得到重型矿用汽车多参数动力性换挡规律.在Maplesim中建立换挡模型,通过仿真计算,得到修正前后车辆轻载下坡路况时挡位和车速变化曲线,后者避免了不必要的换挡,保证了车辆的动力性能.  相似文献   

3.
基于矿用汽车载荷变化大、行驶环境多变、油门变化频繁的特点,依据重载爬坡和轻载下坡的典型工况,制定了重型矿用汽车多参数动力性换挡策略.利用函数叠加法建立康明斯QSL-FR91674型发动机全特性曲线,得到不同油门开度情况下发动机输出转速与输出转矩的表达式.根据发动机输出动力特性,计算得到3550型矿用汽车车速、油门开度和加速度三参数动力性换挡规律.再结合道路状况识别方法、车辆载荷、驾驶员操作意图,针对轻载下坡和重载爬坡工况,修正得到重型矿用汽车多参数动力性换挡规律.在Maplesim中建立换挡模型,通过仿真计算,得到修正前后车辆轻载下坡路况时挡位和车速变化曲线,后者避免了不必要的换挡,保证了车辆的动力性能.  相似文献   

4.
为了使装有机械式自动变速器(AMT)的纯电动商用车的换挡时机能够更好地兼顾动力性和经济性,提出一种综合换挡策略。为提高工况适应性而引入负载识别思想,通过制动踏板信号、加速踏板开度及其变化率、车速、加速度等控制参数来识别汽车行驶工况,并采用工况分层处理。结合驾驶员意图和动力电池荷电状态(SOC)来制定综合换挡控制策略,采用正交设计法对控制策略参数进行优选,建立了整车的基于MATLAB/Simulink与CRUISE软件的联合仿真模型。研究结果表明:仿真分析和实车试验的数据规律吻合良好,表明了仿真模型的适用性。在实车加速性能试验中,采用综合换挡规律,0~50km/h和50~70km/h的加速时间分别为23.48s和24.38s,与动力性换挡规律接近,明显优于经济性换挡规律;在实车郊区路况的经济性试验中,采用综合换挡规律的电池SOC值减少了3.51%,与经济性换挡规律接近,同样优于动力性换挡规律,证明提出的综合换挡控制策略达到了预期的研究目标。  相似文献   

5.
针对轻型货车在弯道行驶速度过快时,有侧滑、侧翻风险的问题,运用模糊控制的方法,设计了挡位修正模块,嵌入自动变速器换挡模块中,对挡位进行修正。基于提出的修正型换挡规律,以某轻型货车为研究对象,建立其整车模型,进行仿真验证。研究结果表明:修正型换挡规律通过对挡位的控制,平均降低车速11.6 km /h,避免了侧翻事故的发生,提高了行驶安全性。该研究为换挡规律的理论完善和实车运用提供了依据。  相似文献   

6.
为提高液力机械综合变速箱对复杂行驶工况的适应能力,以某履带车辆为研究平台,通过分析行驶过程中不同制动方法的特点,针对各制动工况提出了辨识方法,并依据发动机转速、液力变矩器速比、车速信号反馈车辆行驶状态,制定出相应的换挡控制策略. 实车试验表明,该控制策略满足了车辆实际行驶过程中制动工况的要求,且能够符合驾驶员的驾驶意图.  相似文献   

7.
基于Cruise GSP的DCT整车换挡研究   总被引:1,自引:0,他引:1  
换挡规律是指两排挡间自动换挡时刻随控制参数变化的规律,其好坏直接影响车辆的燃油经济性、动力性和排放性。换挡规律的发展,大致经历了传统型、基于经验型和智能型。按照控制参数的多少,换挡规律大致可分为单参数、两参数和三参数换挡规律。本文以目前工程中大量实际应用的二参数换挡规律为基础,应用AVL Cruise软件针对装备双离合器变速器(DCT)的某商用轿车进行整车仿真,在此基础上使用Cruise GSP功能模块对其换挡规律进行仿真计算,并综合考虑道路坡度、行驶环境、车辆经济性和排放对具体工况下的传动系状态进行优化。结果表明,该方法能够快速准确地生成换挡规律、方便地根据路况进行传动系状态优化,进而优化换挡,对于实际工程中加快整车开发、快捷地进行变速器标定具有一定借鉴意义。  相似文献   

8.
针对电控机械式自动变速器(AMT)在换挡过程中会出现动力中断的问题,提出一种双电机输入结构,在换挡时通过辅助电机进行驱动来弥补动力中断的不足.建立了传动系统模型,通过伯恩斯坦多项式来控制两个电机转矩的下降和上升,以协调两者之间的转矩控制.提出一种柔性换挡控制策略,通过车速和加速踏板开度识别复杂工况,根据驾驶员意图修正车速改变换挡时机,达到减少换挡次数的目的.Matlab/Simulink仿真结果表明:采用柔性换挡控制策略之后,在FTP72(美国城市驾驶循环工况)工况下可有效减少约50%的换挡次数;同时,经济性不会受到较大影响.  相似文献   

9.
基于模糊控制的综合传动车辆动态性能仿真   总被引:1,自引:1,他引:1  
为研究综合传动车辆的动态性能,以综合传动的组成和工作原理为基础,分析了换挡过程,建立了整车系统的动力学模型和各组成部分的数学模型,采用模块化的建模方法和图形化建模工具,建立了系统的仿真模型。基于模糊控制理论,建立了车辆行驶过程的模糊换挡控制系统。并对直驶起步加速换挡工况进行了仿真。仿真结果能够较好地描述车辆的动态性能,表明了所建立的仿真模型和模糊换挡控制规律的正确性和有效性,从而为车辆的设计和性能预测奠定了基础。  相似文献   

10.
换挡控制直接影响电动汽车的动力性和经济性,已成为电动汽车发展方向之一。由于各个厂家设计开发差异,动力性与经济性的换挡规律有较大差别。针对时风D102车型,通过检测车辆加速度得到驾驶风格,并将模糊控制算法引入到换挡规律中,实现车辆动力性和经济性的协调。最后利用Simulink模型进行循环工况下的仿真分析,得出模糊控制算法换挡规律在减少耗电量的同时能够兼顾汽车的动力性,使汽车具有较好的综合性能,能适用于大部分工作状态。  相似文献   

11.
换挡控制直接影响电动汽车的动力性和经济性,已成为电动汽车发展方向之一。由于各个厂家设计开发差异,动力性与经济性的换挡规律有较大差别。针对时风D102车型,通过检测车辆加速度得到驾驶风格,并将模糊控制算法引入到换挡规律中,实现车辆动力性和经济性的协调。最后利用Simulink模型进行循环工况下的仿真分析,得出模糊控制算法换挡规律在减少耗电量的同时能够兼顾汽车的动力性,使汽车具有较好的综合性能,能适用于大部分工作状态。  相似文献   

12.
拖拉机田间作业工况自适应换挡控制策略   总被引:1,自引:0,他引:1  
传统拖拉机由于自身结构和作业环境,因挡位密集或田间载荷波动常导致循环换挡,影响作业质量。为此,针对不同田间作业工况提出了工况自适应换挡控制策略:在起步或加速工况时,通过跳挡避免换挡频率过快;在载荷波动较小时,运用模糊-PID控制来满足速度的要求;在载荷波动较大时,通过对换挡策略的修正来满足速度的要求。运用MATLAB/Simulink仿真平台进行了验证。仿真结果表明:修正后的换挡策略能避免换挡频率过快,减小速度波动,避免了循环换挡,提高了燃油经济性。  相似文献   

13.
自动驾驶汽车有着极大的应用潜力且高速公路环境下车辆变换车道是常见的行为。为进一步分析高速公路中自动驾驶汽车的微观换道决策,本文定义道路不满意度来表示车辆对行驶道路的不满意程度并将车辆换道意图的产生按本车是否达到目标车速而分为两类,当本车达到目标车速时为第一类,换道意图产生源于本车与前车间距的减小和本车相对于前车速度的增加。当本车未达到目标车速时为第二类,换道意图产生源于本车与前车间距的减小和本车达到目标车速时相对于前车移动距离的增大。针对不同类换道意图的产生机制,结合模糊推理设计道路不满意度算法。换道决策利用当前行驶车道和邻近车道的道路不满意度大小、安全跟车距离、换道安全距离来综合决定换道意图的发生。最后在MATLAB环境下搭建自动驾驶环境并仿真换道决策模型,结果显示本文相比其它换道决策,本文不仅考虑换道安全而且也考虑了目标车道和本车道的跟车安全,更具有实际意义。同时本文的模糊换道决策能兼顾安全性和智能性且适用于依目标车速定速巡航、为达到目标车速而加减速等多种复杂工况下的换道情况。  相似文献   

14.
汽车自动同步换挡系统及其换挡策略   总被引:1,自引:0,他引:1  
提出了AST自动同步换挡系统及其自动换档策略.通过油门踏板分析出驾驶员意图,将其转换为本系统的控制指令:加速度.并通过制定合理的换挡策略,综合控制节气门与变速器,用闭环控制来跟随加速度指令,从而实现汽车动力性、舒适性与燃油经济性自动换挡.在Matlab仿真软件中搭建了自动同步换挡系统的意图识别、换挡策略、汽车动力模型各模块,通过仿真证明了本同步换挡系统及换挡策略的可行性.  相似文献   

15.
针对自动变速车辆换挡策略优化问题,以燃油经济性和车辆行驶性能综合最优为目标,利用动态规划(DP)方法,计算并分析了配备自动机械变速器(AMT)的重型车辆在C-WTVC循环工况下换挡序列的最优决策。建立了循环工况下车辆换挡优化问题的动态规划模型;以功率储备作为评价车辆行驶性能的参数指标,建立了包含经济性、行驶性能的多参数指标函数。考虑了AMT换挡期间存在动力中断的特点,对DP方法进行改进,获得了一系列的挡位序列。研究结果显示,与原有两参数换挡规律对比,DP方法得到的挡位序列使车辆总油耗降低了6.4%,行驶性能指标提高了3.5%。研究表明使用DP方法和多参数指标函数可以得到车辆在循环工况下综合性能最优的换挡序列,对AMT重型车辆的自动控制具有指导意义。  相似文献   

16.
为了提高某装备有机械电控自动变速器(AMT)的单轴并联式混合动力电动客车的经济性,选择车速、电动机转矩和发动机转矩为换挡参数,建立了混合动力传动部件效率模型,将包含电池效率、电动机效率以及发动机效率在内的混合动力系统综合效率最优作为换挡目标,并基于遗传算法对效率换挡点进行优化,获得该客车在混合驱动模式下的混合动力系统综合效率换挡规律.同时,基于AVL Cruise平台,搭建该客车仿真模型,选取UDC工况,分别采用车速、油门开度的2参数换挡规律和混合动力系统综合效率换挡规律进行仿真分析.结果表明:提出的混合动力系统综合效率换挡规律在保证车辆动力性的同时提高了车辆经济性,并降低了车辆的排放量.  相似文献   

17.
插电式混合动力汽车能耗及其影响因素分析   总被引:3,自引:0,他引:3  
通过建立插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)的前向仿真模型,对其能耗进行仿真,并分析PHEV能耗的使用影响因素.基于Modelica物理建模语言,搭建PHEV整车动力传动及纵向动力学模型,并在标准测试工况下仿真整车各部分能耗变化.针对影响PHEV能耗的使用因素,重点仿真分析表征行驶工况的平均车速和驾驶激进性对电量消耗(charge deplete,CD)阶段电耗和电量保持(charge sustain,CS)阶段油耗的影响规律.通过分析不同车速与驾驶激进性下各部分能耗以及动力部件工作效率的影响,揭示了行驶工况对能耗影响规律的内在机理.  相似文献   

18.
在传统的汽车燃油经济性和全负荷动力性客观评价基础上引入汽车驾驶性客观评价指标体系,重点阐述了驾驶性评价的4个主要方面,即部分负荷特性、加速踏板感觉、换挡平顺性和瞬态急踩/松加速踏板响应.详细分析了纵向加速度响应曲面、加速踏板-加速度线性度、加速度增益、换挡冲击度、加速度均方根值和振动剂量等驾驶性客观指标,并通过线性相关分析验证客观指标与主观评价的一致性.基于多目标性能平衡,构建了整车级别燃油经济性、动力性与驾驶性综合评价体系.以某6速自动挡柴油车型为例,利用AVL CRUISE软件建立车辆纵向动力学性能计算模型,借助AVL GSP(gear shifting program)工具快速生成最佳燃油经济性换挡策略和兼顾油耗、动力与驾驶性约束的综合性换挡策略,对比分析2种不同换挡策略下的燃油经济性、动力性与驾驶性部分客观评价指标,通过定量分析表明了客观评价体系的有效性和实用性.  相似文献   

19.
为实现车辆换挡操纵的自动化,文章根据自动变速器双参数换挡规律,运用PID控制理论建立了驾驶员模型,并根据整车各部分数学原型建立了发动机模型、传动模型、车辆模型。在整车模型及其工作原理的基础上,从动力性及经济性2个方面确定了换挡规律,并采用Stateflow有限状态机理论建立换挡逻辑控制模型。在UDDS工况和依照制动优先系统(Brake Override System,简称BOS)建立的车辆行驶特殊工况下进行仿真,并与自动变速器台架试验结果进行对比,结果表明,该自动变速器模型,能严格按照换挡规律换挡。  相似文献   

20.
双离合器自动变速器(DCT)换挡时序控制过程复杂,容易出现意外换挡、冗余换挡。针对当前对于换挡时序的研究缺乏系统完整性,引入两参数对换挡过程和换挡类别进行分类和识别,就换挡过程中顺序升挡、顺序降挡、同轴跳跃降挡以及异轴跳跃降挡分别制定相应的控制策略。在此基础上利用Matlab/Simulink软件平台搭建DCT换挡时序仿真模型,在城市道路行驶工况(ECE)下进行了DCT换挡时序仿真分析。仿真结果验证了提出的换挡时序控制策略可以有效地减少冗余换挡、意外换挡,提高了换挡过程的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号