首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的分析CVD复合涂层刀具在天然石材加工中的磨损特性,探讨涂层刀具在石材加工中参数选择的合理性.方法使用CVD复合涂层刀具对天然大理石进行了高速铣削试验,利用测力仪测量出不同加工参数下的切削力,分析不同参数对切削力的影响,利用扫描电子显微镜观察刀具磨损形貌,通过能谱分析刀具组成.结果CVD复合涂层刀具切削天然大理石过程中,切削力随切削深度和进给速度的增大而增大,随主轴转速的增大而减小,切削深度对切削力的影响程度最大.刀具磨损量随主轴转速的增大而减小,与切削深度和进给速度之间为非线性关系,进给速度高于2 000 mm/min时出现整体磨损,磨损量不随进给速度的增大而变化.结论 CVD复合涂层刀具铣削天然大理石时的磨损机理是:涂层和刀具基体的机械损耗去除(剥落和崩刃)、高温下的氧化磨损和粘结磨损.由于工件和刀具表面存在摩擦产生热量,刀具涂层发生粘结磨损,在周期性冲击力作用下造成后刀面涂层和基体的机械损耗去除,裸露的刀具基体与空气中的氧发生氧化磨损,其中机械损耗去除磨损和粘结磨损伴随整个刀具磨损过程.  相似文献   

2.
响应曲面法预测铣削力模型及影响因素的分析   总被引:9,自引:0,他引:9  
通过统计学中的响应曲面法建立了螺旋铣削过程中切削力的二阶模型,并分析了主轴转速、每齿进给量、轴向和径向切削深度等因素对切削力的影响。将主轴回转一个周期时的切削力波形分成几个区间,建立不同切削条件下切削力区间端点的切削力模型,预测一定切削参数范围内任意切削条件下的切削力区间端点值,将各端点的连线用傅里叶级数表示,可得到周期性的切削力波形,该模型的置信度为95%,预测结果和实验测得的数据十分吻合,对实际生产加工中切削参数的优化选取具有一定的指导作用。  相似文献   

3.
铣削加工振动影响因素分析   总被引:2,自引:0,他引:2  
为了解决铣削振动的影响因素难以确定的问题,建立了铣削系统二自由度模型,利用切削厚度分析的方法进行了切削力分析;利用动力学方程,根据方程中的各参量,确定了主轴转速、轴向切削深度、进给速度和径向切削深度四个切削参数是影响铣削振动的主要因素。通过正交切削实验,确定了各切削参数对铣削振动的权重排序,得出切削速度是铣削振动的最主要的影响因素的结论。为研究铣削加工振动稳定性研究奠定了理论基础,同时也为利用变参数切削振动控制确定了首选控制参量。  相似文献   

4.
鲍骏  白海清  任礼  安熠蔚  秦望 《科学技术与工程》2021,21(36):15400-15410
如何更好对钛合金材料进行切削加工,以及在保证高切削加工效率,高精度与低切削力的基础上,如何对加工参数进行合理选取一直是钛合金切削加工领域中的一大研究热点。为了探究TC4钛合金的铣削性能与铣削参数优化问题,设计了正交铣削试验方案,分析了铣削参数即背吃刀量,侧吃刀量,主轴转速,进给速度对其铣削力与铣削后表面粗糙度的影响规律。将铣削力,表面粗糙度与材料去除率作为优化目标,建立了多目标优化模型,在Pareto算法的基础上,采用了一种简捷的方法对模型进行求解,并通过试验验证了该方法的可行性。结果显示,对铣削力的影响程度中,背吃刀量影响最大,随后是侧吃刀量与主轴转速,进给速度影响程度最小;对表面粗糙度的影响程度中,进给速度影响最大,其次是侧吃刀量与背吃刀量,主轴转速影响程度最小;Pareto算法所得的参数组通过试验验证,与正交试验组相比,各项指标数值均在较优位置。  相似文献   

5.
在切削速度范围157~1 000 m/min内,综合应用析因试验与速度单因素试验,对航空用难加工材料2Cr13马氏体不锈钢进行了高速干式铣削试验。在分析其切削力显著性影响因素的基础上,对切削力随机信号进行了现代谱分析与小波分析。研究结果表明,高速切削马氏体不锈钢材料时,切削速度和每齿进给量之间的交互作用对切削力有显著影响;铣削深度和每齿进给量之间的交互作用在切削力响应信号中表现为低频周期信号;低频周期信号与高频信号叠加后,其波形的振幅将会增大。  相似文献   

6.
为研究单晶高温合金的微铣削表面质量,使用M.A.FORD双刃端铣刀,刀刃直径为0.8 mm,试验材料为单晶高温合金DD98,完成正交试验研究.通过极差分析找出主轴转速、进给速度、铣削深度对微铣削表面质量影响的主次因素,即主轴转速的影响最大,铣削深度其次,进给速度最小;采用统计学知识,获得切削工艺参数的优化组合,使表面粗糙度最小,即主轴转速为n=3.6 kr/min,铣削深度为ap=5μm,进给速度为v=100μm/s,对此优化方案重复试验,表面粗糙度值为951 nm.并对其切削机理和影响表面质量及形貌的原因进行深入的分析,对单晶高温合金的微加工理论的机理揭示具有一定的指导意义.  相似文献   

7.
针对机床实际铣削过程中进给系统受多源、多频扰动影响,特别是直驱进给系统由于"零传动"特性,运动精度受外界扰动影响更为显著的问题,研究了机床加工过程多源扰动机理、频谱特征及其影响下直线电机进给系统推力电流频谱特性,综合分析了铣削过程中刀具-主轴系统的多源扰动,建立了考虑刀具偏心跳动的铣削力模型、主轴离心力模型、主轴轴承振动模型,并分析多源扰动频谱特性。表征了多源扰动激励下直线电机进给系统输出位移波动特性,并在直线电机驱动的VMC0865机床上完成单轴进给切削实验。实验结果表明:在进给速度为1 500mm/min、主轴转速为5 000r/min、切宽为2mm、切深为2mm的情况下,X轴位移波动均方值从0.36μm增加到0.81μm,推力电流均方值从0.94A增加到1.15A;推力电流增加了主轴转频及其倍频、分频、边频的谐波成分;切削力会影响进给系统运动精度,从而影响零件加工质量和加工精度,验证了切削过程对直线电机进给系统推力电流频谱特征的影响;对比了不同切削参数对进给系统推力电流频谱特征的影响,明确了主轴转速是对推力电流频谱特征最为显著的切削参数。该研究对于直驱进给系统控制算法改进与加工参数选择具有重要指导意义。  相似文献   

8.
基于平均切削厚度钛合金TC4铣削机理   总被引:1,自引:0,他引:1  
沈中  孙暄  刘钢  陈明 《上海交通大学学报》2007,41(4):614-618,623
选用航空领域应用最广泛的钛合金TC4,基于平均切削厚度进行大量铣削试验,通过切削温度、切削力、切削振动、切屑变形等方面研究其铣削机理.试验结果表明,平均切削厚度是影响铣削性能的重要参数;保持平均切削厚度不变,在一定范围内调整径向切削深度和每齿进给,不论是切削温度、切削力还是振动变化都很小,可以认为具有相同的切削效果.同时,还归纳出不同铣削速度段下切削温度随平均切削厚度的变化规律及切屑变形的特性,并指出选择合适的平均切削厚度进行铣削加工TC4,不仅可以提高刀具耐用度而且可以改善加工表面质量.  相似文献   

9.
在钛合金的铣削加工过程中,切削力特性将对零件的最终加工质量有重要的影响.对用球头铣刀铣削钛合金工件的切削力特性进行研究.首先建立了用球头铣刀对Ti-6Al-4V铣削加工的切削力数学模型,并通过编写程序求解得出了瞬时切削力及其变化规律;其次建立了球头铣刀对Ti-6Al-4V铣削加工的有限元仿真分析模型,获得了铣削过程中铣削区域的应力场、温度场等;最后设计并完成了切削力测试实验,将得到的实验数据进行了正交分析.结果表明切削参数对平均铣削力影响程度大小的顺序为:轴向切深、每齿进给量、径向切深和主轴转速.  相似文献   

10.
考虑铣削过程中刀具磨损与环境温度两个因素,该文研究了数控铣削过程中切削深度、进给速度和主轴转速三个主要参数对铣削后的工件表面粗糙度的影响规律。通过对实验数据的分析,基于田口设计法研究了各因子在不同水平下的表面粗糙度与信噪比的变化特征,分析了不同铣削参数对工件表面粗糙度的影响程度,从而获得了优化铣削参数。实验结果表明,在该实验条件下对工件表面粗糙度影响程度的大小依次为主轴转速、进给速度和切削深度,采用最优铣削参数能达到的最小粗糙度值为0. 8μm。研究方法对优化数控铣削加工参数具有参考意义。  相似文献   

11.
采用有限元仿真和单因素实验相结合的方法,研究了铝合金6061微尺度铣削的铣削力影响因素.建立了刀具和工件的三维模型并对其进行装配和网格划分,通过有限元仿真模拟了铝合金6061材料的微尺度铣削过程,得到了铣削速度和铣削深度对铣削力的影响规律,并进行了单因素实验研究.结果表明:随着主轴转速的不断增大,铣削力先增大后减小,转折点为24000r/min;随着铣削深度的不断增大,铣削力先增大后减小再增大,转折点为10μm和12μm;随着进给速度的不断增大,铣削力也不断增大.优选出铝合金6061材料微尺度铣削最优工艺参数组合为:主轴转速48000r/min,铣削深度5μm,进给速度20μm/s.  相似文献   

12.
提出了一种基于主轴系统动态行为的高速铣削工艺参数优化方法.基于主轴系统动态行为,以无颤振状态下随转速变化的极限切削深度最大及生产率最大为综合优化目标函数,构建集成主轴系统动态行为与工艺参数交互影响特性的优化模型,运用人工蜂群算法对铣削工艺参数进行优化计算,得到无颤振状态下生产率最大的最优铣削工艺参数组合方案.实例及试验结果表明,采用基于主轴系统动态行为的高速铣削工艺参数优化方法可以获得最优铣削工艺参数,该参数在实际切削时不会发生颤振.  相似文献   

13.
基于切削参数和刀具状态的铣削功率模型   总被引:2,自引:1,他引:2  
以经典铣削力模型为基础,同时考虑刀具磨损的影响,建立了基于切削参数(主轴转速、进给量、背吃刀具(即切削深度)、工件材料及刀具材料)的铣削功率模型。试验证明,该铣削功率模型能正确反映铣削功率信号与刀具状态及各种切削参数之间的关系。  相似文献   

14.
单晶镍基高温合金微铣削力试验   总被引:1,自引:0,他引:1  
以单晶镍基高温合金DD98为研究对象,从单晶高温合金微观组织分析材料去除机理,得出DD98滑移面为密排面{111},滑移向为密排方向110,克服阻力最小,最易滑移.采用双刃微铣刀对单晶镍基高温合金DD98进行正交试验,通过极差分析比较获得切削参数对微铣削力的影响程度.结果表明,主轴转速的影响最大,进给速度其次,铣削深度最小.通过优化获得理想的切削参数为:主轴转速36 000 r/min,铣削深度5μm,进给速度20μm/s,此时微铣削力最小.并对其原因进行深入分析,为单晶高温合金的微加工理论的机理揭示提供理论参考和试验依据.  相似文献   

15.
高速铣削高强高硬钢加工表面残余应力研究   总被引:6,自引:2,他引:4  
研究高速铣削高强高硬钢时,铣削参数与加工表面残余应力的关系.进行了高速铣削高强高硬钢时的切削温度、切削力实验研究,分析了切削参数对平均切削温度、平均切削力的影响规律,分析了切削力、切削热以及由其引起的微观组织变化对加工表面残余应力的影响.结果表明,高速铣削高强高硬钢时,加工表面产生明显的残余应力.在所选用切削参数范围内,皆产生残余压应力;切削力以及切削热引起的金相组织变化是产生残余压应力的主要原因;在所选用的切削范围内,随着切削速度的增加,加工残余压应力增大,残余应力的影响深度增大.  相似文献   

16.
以低刚度薄壁零件为研究对象,基于加工原理建立精确的铣削过程薄壁零件三维动力学模型,并在此基础上采用全离散解析法对颤振稳定域叶瓣图进行仿真分析及实验验证.结果表明:薄壁零件铣削加工系统的动态特性决定其动力学模型,铣削加工过程主轴转速与颤振临界轴向切削深度之间存在非线性关系,主轴转速对颤振稳定性影响较明显.当系统模态质量、阻尼比及固有频率增大时,颤振稳定性相应加强,同时叶瓣图形状分布随之改变.该理论模型对薄壁零件铣削加工过程切削参数的合理选择,表面加工质量和加工效率的提高具有一定指导意义.  相似文献   

17.
高速铣削718模具钢表面粗糙度数学模型建立   总被引:2,自引:0,他引:2  
对718模具钢进行高速铣削试验研究,发现铣削速度v、背吃刀量ap、进给速度vf和径向铣削深度ae对表面粗糙度的影响规律.在正交试验结果的基础上,应用多元线性回归分析方法,建立表面粗糙度的回归数学模型,用F检验法验证模型的显著性.运用极差分析法分析铣削用量各参数对表面粗糙度影响程度:影响最大的是径向铣削深度,其次是铣削速度和背吃刀量,每齿进给量的影响最小.  相似文献   

18.
在不同切削参数下,对32Cr3NiMoVA超高强度钢高速铣削过程中产生的切屑形态进行试验,采用VHX-500F型光学显微镜对切屑的自由表面和后表面进行分析.试验结果表明,在每齿进给量0.2mm/r、切削深度0.5mm和切削速度200~1 000m/min的范围内,形成适宜切削的螺旋状切屑,并且随着速度的增加,螺旋状切屑的直径先减少后趋于稳定值,切屑的锯齿化程度随切削速度、每齿进给量和切削深度的增加而增大.  相似文献   

19.
目的研究聚晶金刚石(PDC)钻头切削齿破岩过程中的温升及变形情况,确定在不同切削参数下PDC钻头单齿破岩时温升和变形的变化规律.方法利用非线性有限元仿真软件,建立了二维PDC钻头切削齿-岩石动态仿真模型,通过改变钻头切削齿破岩时的切削参数,得到了不同参数条件下切削齿温度和变形的变化规律,对切削齿破岩过程中的温升及热变形进行分析.结果切削温度在初始阶段上升较快,0. 02 s左右趋于平稳,同时切削深度对温度的影响最大;温度的升高以及切削力的变大,会使切削齿的变形增大.结论在PDC钻头单齿破岩的过程中,PDC切削齿的温度变化与其切削深度、切削速度以及齿前角密切相关.切削深度对其温度的影响较为明显.与所受的切削力相比温度对切削齿的变形影响较为明显.  相似文献   

20.
本文考虑了铣刀的螺旋角及变齿距特性,基于切削力力学模型建立了变齿距立铣刀切削力模型;以该模型为基础,采用快速标定法测量的铣削力系数,利用Matlab软件对铣削力进行了仿真分析.同时,开展了变齿距铣刀铣削试验.试验与仿真分析的比较结果表明:对于变齿距铣刀,本模型都具有可靠有效的切削力预测能力;采用传统的快速标定法获得的铣削力系数可以应用于变齿距铣刀切削力预测,并可获得较好的效果;由于变齿距效应,各个刀齿承受的切屑载荷不同,相邻切削刃的铣削力峰值和相位也显示出明显差别.该方面研究对认识该类铣刀的切削力特性,开展刀具几何参数优化具有一定的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号