首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过溶胶-凝胶制备双钙钛矿PrBaCo_2O_(5+δ)(PBCO)中温固体氧化物燃料电池阴极材料,研究结果表明:PrBaCo_2O_(5+δ)为四方结构.在100~850℃内,PBCO样品为金属导电机制.交流阻抗谱的测试结果表明:PrBaCo_2O_(5+δ)电极在800℃时的极化电阻为0.034 8Ω·cm~2.采用La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)电解质为支撑体的单电池在800℃时的功率密度达到558.7 m W/cm2.  相似文献   

2.
以硼硅玻璃和Al2O3陶瓷粉料为原料,通过改变玻璃和Al2O3质量比(60∶40~40∶60),采用低温烧结法制备低温共烧多层陶瓷基板(LTCC)材料。采用热膨胀仪、电子万能试验机、导热仪、X线衍射仪(XRD)、扫描电子显微镜(SEM)和阻抗分析仪表征样品的性能。结果表明:样品在烧成温度超过650℃以后,开始出现快速的收缩。随着Al2O3含量增加,样品的密度先增加后减小,烧结收缩率减小。随着样品密度下降,样品的热导率(λ)、抗弯强度(σ)和介电常数(εr)降低,介电损耗(tanδ)恶化。当Al2O3质量分数为45%时,复相材料于875℃烧结致密,显示出较好的性能,λ=2.89 W/(m.K),σ=203.1 MPa,εr=7.66,tanδ=9.1×10-4(于10 MHz下测试)。  相似文献   

3.
Ce_(1-x)Dy_xO_(2-δ)固体电解质的合成及其性能研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法合成Ce1-xDyxO2-δ(x=0.05~0.50)固溶体,通过X射线衍射、拉曼光谱、原子力显微镜对样品进行结构表征,利用交流阻抗谱测试其电性能.结果表明:掺入Dy3+可提高Ce1-xDyxO2-δ的电导率,其中Ce0.9Dy0.1O2-δ的电导率最高,活化能最小,600℃时的电导率为5.50×10-3S.cm-1,活化能为0.85 eV,比纯CeO2的电导率提高了3个数量级.  相似文献   

4.
采用传统陶瓷烧结方法,制备了CaCu3Ti4O12(CCTO)-xZnO(x=0,0.05,0.20,0.60,1.00)陶瓷样品.应用X射线衍射仪及扫描电镜,分别确定了样品的物性和形貌.利用阻抗分析仪测定了不同频率和温度下材料的介电常数和介电损耗,研究了ZnO对CCTO材料的微观结构和介电性能的影响.结果表明:添加ZnO可促进CCTO晶界处小晶粒生长,抑制大晶粒生长,降低CCTO陶瓷样品高频范围的介电损耗.当x=1时,在1kHz~1MHz频率范围内,tanδ均小于1.1,并且可将陶瓷的压敏电压提高至100V/mm.这为优化CCTO材料性能、推进其在电容器方面的应用,提供了一定的实验依据.  相似文献   

5.
凝胶浇注法制备了阴极材料Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ),并对Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)材料的性能进行分析。制备的Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)为钙钛矿相,其颗粒粒度小,并且尺寸均匀。将粉末在1000℃下烧结,所得烧结体的孔隙率为29.86%。在500~800℃温度范围内测试,测试温度升高,电导率降低,在500℃时电导率最大为38.2 S/cm。阴极Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)与电解质Sm_(0.2)Ce_(0.8)O_(1.9)做成阴极对称单电池,在800℃时测得欧姆阻抗和界面阻抗分别为1.92Ω·cm~(-2)和0.17Ω·cm~(-2),阴极BSCF与电解质SDC的化学相容性好。  相似文献   

6.
铋层状压电陶瓷具有较高的居里温度和良好的热稳定性,被广泛应用于高温、高频电子领域.本文采用传统固相合成法制备了K_(0.5)Bi_(4.5-x)Eu_xTi_4O_(15)高温铋层状无铅压电陶瓷,并详细研究了Eu3+掺杂对K_(0.5)Bi_(4.5-x)Eu_xTi_4O_(15)材料的结构与光电性能的影响.研究结果表明稀土Eu3+掺杂对K_(0.5)Bi_(4.5-x)Eu_xTi_4O_(15)陶瓷的相结构的影响不大:陶瓷均为均一致密的片层状结构.Eu3+掺杂一定程度上促进材料电性能的提高,当x=0.004时,陶瓷综合性能最佳:居里温度Tc=540℃、介电损耗tanδ=0.80%、压电系数d33=19pC/N及剩余极化强度2Pr=9.8μC/cm2.此外,掺杂后的陶瓷样品获得了光致发光性能,在526nm的蓝光激发下,样品呈现出明亮的橙红光.  相似文献   

7.
采用传统的无压固相烧结法工艺制备微量掺杂0.2%(摩尔分数)BiMnO3(BM)的0.95K0.5Na0.5NbO3(KNN)-0.05 LiSbO3(LS)陶瓷,并研究烧结保温时间对陶瓷的结构与压电、介电性能的影响规律。研究结果表明,随烧结保温时间的延长,陶瓷的压电常数d33和机电耦合系数kp先显著升高,当保温时间为7 h时,趋于稳定,介电常数εr也随保温时间的延长而升高;机械品质因数Qm和介电损耗tanδ则一直降低。在1 100℃保温烧结9 h时,陶瓷具有最好的电性能:压电常数d33=228 pC/N,机电耦合系数kp=43%,机械品质因数Qm=55,介电损耗tanδ=0.017 8;随保温时间的延长,陶瓷的相转变温度θo-t有所降低,居里温度θc则明显升高。所有陶瓷样品在35~200℃内的介电损耗tanδ均有小于0.02。  相似文献   

8.
研究了大块Ca0.28Ba0.72Nb2O6(CBN-28)单晶沿[001]方向的铁电介电性能.结果表明,CBN-28单晶的自发极化、剩余极化和矫顽场分别为35.3μC/cm2,32.2μC/cm2和38.1kV/cm.在室温下频率f=10kHz时,介电常数(εr=195,介电损耗tgδ=0.32.变温的介电谱显示该单晶在252℃附近发生了正常铁电体向弛豫铁电体的转变.低频时在325℃~500℃范围内出现了具有弛豫特征的介电反常.120℃附近有一由氧空位的迁移引起的介电弛豫损耗峰,由此计算得激活能为1.19eV.通过阻抗谱计算,在500℃~560℃范围内的电导激活能为1.33eV.  相似文献   

9.
研究了硫铁铝酸钡钙系列矿物水化1d、3d和28d水化样的电学性能。在40Hz-50kHz频率范围内,随水化龄期的增加各试样阻抗均下降;且水化时间对硫铁铝酸钡钙矿物相对介电常数的影响很大,表现出不稳定性;在低频40Hz~10kHz之间,介电损耗正切值tanδ无规律,但在10-50kHz之间,tanδ随频率的增加呈下降趋势。硫铁铝酸钡钙矿物的水化相对稳定期较硫铝酸钡钙矿物提前,在水化后期均在Nyquist图谱中出现了Randles型图形。  相似文献   

10.
将具有高离子传导的Sr_(1-x)Na_xSiO_(3-0.5x)(x=0.35,0.45)材料应用于中温固体氧化物燃料电池电解质.利用X射线衍射(XRD)、范德堡法和阻抗测试对电解质样品的结构、电导率和阻抗谱进行了研究.XRD结果表明,利用固相反应法制备样品时,当烧结温度为950℃,烧结时间为15 h后可以获得Sr_(1-x)Na_xSiO_(3-0.5x)电解质材料单相结构.电导率结果表明,x=0.45的电解质样品显示出更高的电导率,其电导率在800℃时,达到0.027 S·cm~(-1).两种样品的阻抗谱结果显示,x=0.45的电解质具有更高的氧离子电导率.  相似文献   

11.
用溶胶-凝胶法制备La_(0.8)Sr_(0.2)Mn_(0.98-x)Fe_xCo_(0.02)O_3(x=0.08、0.10、0.12、0.14)晶粉,用场发射扫描电子显微镜和XRD表征其微观形貌和晶体结构,用微波网络矢量分析仪测量样品在2~18 GHz频率范围内的复介电常数和复磁导率,根据测量数据计算微波反射率与频率的关系曲线.研究结果表明:900℃煅烧3 h的La_(0.8)Sr_(0.2)Mn_(0.98-x)Fe_xCo_(0.02)O_3粉晶平均粒径约100 nm,晶体结构为钙钛矿型;在测试范围内,样品都有一个吸收峰,峰高及频率位置随x不同而异;厚度2 mm,x=0.08、0.10、0.14,大于10dB的吸收带宽达到4 GHz以上,样品既有介电损耗又有磁损耗,但介电损耗要大于磁损耗.  相似文献   

12.
采用溶胶凝胶方法制备Sm掺杂CeO2粉体材料,用放电等离子烧结(SPS)方法和常规烧结方法(CS)进行压片烧制,比较两种烧结方法对材料结构与性能的影响.通过X-射线衍射(XRD)、场发射扫描电镜(FE-SEM)等手段对氧化物进行结构表征,交流阻抗谱测试电性能.结果表明,两种烧结方法所得样品均呈现单一的立方莹石结构;SPS烧结样品的晶粒尺寸和密度大于CS烧结样品,SPS烧结样品的晶粒电导率、晶界电导率及总电导率均高于CS烧结样品;550℃时SPS和CS烧结样品的总电导率分别为2.27 s/m和1.87 s/m.放电等离子烧结法是在较低温度下实现快速烧结,制备致密化固体电解质材料的一种有效方法.  相似文献   

13.
测试了六种新型低发泡聚酯聚氨酯样品的动态力学性能.发现内耗温度曲线在—10℃和—100℃左右均有α和γ指纹吸收峰.α转变的tanδ值在0.355到0.565范围,α转变的表观活化能为38.08~55.49千卡/克分子;γ转变的表观活化能为10.18~23.83千卡/克分子.六种样品的动态模量E在—37℃~30℃的范围内均急剧下降约二个数量级至1.5×10~8达因/厘米~2左右随后进入"橡胶平台区".观察到了尚未见报导过的"多阶橡胶平台"现象.  相似文献   

14.
用熔融法制备CaO-PbO-B2O3-SiO2系玻璃,以低温共烧法制备玻璃烧结体,研究不同Al2O3含量和烧成温度对玻璃的烧结性能和电性能的影响.结果表明:随着Al2O3含量的增加,玻璃的玻璃化转变温度升高,介电常数增加,介电损耗增加;X线衍射分析(XRD)显示G1玻璃在800℃析出CaSiO3和β-SiO2;G1玻璃于725℃保温30 min烧结,于10 MHz测试,介电常数(εr)=6.1,介电损耗(tanδ)=5.9×10-4;该玻璃有较低的玻璃化转变温度(tg=697.1℃)、较差的析晶能力、较低的介电损耗,适合作为低温共烧陶瓷(LTCC)的玻璃料使用.  相似文献   

15.
采用传统的固相反应法制备了(1-x)(Na0.65K0.35)0.94Li0.06NbO3-xmol%MnO2无铅压电陶瓷,研究了Mn的掺杂对陶瓷压电和介电性能的影响.实验结果表明,所有的样品都显示出四方相钙钛矿结构.材料的平均晶粒尺寸随着MnO2掺杂量的增加逐渐变大.MnO2的添加使样品的压电常数d33、平面机电耦合系数kp、机械品质因数Qm、介电损耗tanδ和相对密度均得到明显改善.当MnO2的掺杂量为0.50mol%的时候,样品的性能达到最佳:d33=144pC/N,kp=42%,tanδ=2.4%,Qm=168.以上数据表明,该陶瓷材料是一种极具应用潜力的无铅压电陶瓷材料.  相似文献   

16.
采用固相法制备PrBa0.5Sr0.5Co2O5+δ(PBSC)中温固体氧化物燃料电池阴极材料.研究结果表明:PrBa0.5Sr0.5Co2O5+δ为正交钙钛矿结构.交流阻抗谱的测试结果表明,PBSC-40%GDC电极在800℃时的极化电阻为0.039Ω.cm2.以电解质为支撑体的单电池在800℃时的功率密度达到645 mW.cm-2.  相似文献   

17.
采用传统陶瓷工艺,制备了(Bi0.5Na0.5)0.94Ba0.06TiO3压电陶瓷.研究了烧结温度为1 120~1 180℃时陶瓷样品的密度、相组成、显微组织、压电和介电性能.结果表明,所有样品均为三方、四方相共存,有高的体密度.1 160℃烧结陶瓷,体密度可达到最大值(理论密度的98%),并且有很好的电子性能(压电系数d33=131 pC/N,平面机电耦合系数 kp=0.297,介电常数(ε)r=615,介电损耗tanδ=0.020.)  相似文献   

18.
通过传统固相法合成了四元系压电陶瓷材料Pb0.95Sr0.05(Zr1-xTix)O3-Pb(Mn1/3Sb2/3)O3-Pb(Zn1/3Nb2/3)O3(简称PZT-PMS-PZN),用XRD技术分析了陶瓷的相结构,研究了不同Zr/Ti比对该材料的机械品质因数Qm、机电耦合系数KP、压电常数d33、介电常数rε以及介电损耗tanδ的影响.结果表明,当0.46≤x≤0.50时,材料四方与菱方两相共存,即为材料的准同型相界.当x=0.48且烧结温度为1150℃时,陶瓷具有优良的综合电学性能.其主要性能参数为:εr=1 761,tanδ=0.002 8,Qm=1300,d33=351pC/N,Kp=0.58.该材料可作为大功率压电陶瓷变压器的候选材料.  相似文献   

19.
为探究Fe掺杂对BiTaO4陶瓷样品介电特性和铁电特性的影响,采用传统固相烧结法制备了Bi Ta1-xFexO4-x(x=0,0.01,0.03)陶瓷样品,利用X线衍射仪和扫描电子显微镜对样品的晶体结构和表面形貌进行分析,利用精密阻抗分析仪和铁电分析仪对样品的介电性能和铁电性能进行检测.结果表明:Fe掺杂没有明显改变样品的晶体结构;随着Fe掺杂量的增加,样品的介电常数表现出较好的稳定性,介电损耗略有减小,且基本保持在tanδ=0.05以下,其漏电流先增大后减小,且掺杂样品均可得到比较完整的电滞回线.  相似文献   

20.
目的 制备ZnO:Co粉体,并研究了不同Co掺杂浓度对ZnO:Co电磁特性的影响.方法 采用溶胶.凝胶法制备了ZnO:Co粉体,应用XRD,SEM等手段对产物进行了表征,用波导法测试了ZnO:Co粉体在x波段(8.2GHz~12.4GHz)的电磁参数.结果 各样品均为六方晶系纤锌矿结构的球状颗粒,当掺Co摩尔分数为5%时出现了微量的ZnCo_2O_4,XRD中3个主衍射峰对应的晶面间距随着掺杂浓度的增大而减小.从平均值的角度来看,各组样品具有较大的磁损耗,随着掺杂浓度的增大,ZnO:Co的介电参数(ε',ε"和tanδ_e)减小,而磁参数(μ',"μ和tanδ_u)先增大后减小.结论 此工艺条件下制备的ZnO:Co属于电磁损耗型微波吸收材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号