共查询到18条相似文献,搜索用时 78 毫秒
1.
杨华芬 《长春工程学院学报(自然科学版)》2009,10(1):68-71
提出了基于改进聚类算法的模糊神经网络的短期负荷预测方法。首先,利用改进聚类算法确定模糊神经网络的结构,然后利用混合学习算法训练该网络的前件和结论参数,最后向训练好的模糊神经网络输入相关的影响因素数据进行预测。预测结果显示,改进的模糊神经网络可以获得较高的预测精度,所以有更好的使用价值。 相似文献
2.
3.
根据电力市场负荷信息,结合相关历史数据与资料,分析电力市场的负荷走势,应用Matlab神经网络工具箱的信息处理技术,预测未来各月的负荷,为决策人员提供及时、科学的决策信息.应用相应的隶属度来描述负荷与影响负荷因素之间的关系.对安徽某地区的月负荷数据进行了具体计算,结果表明该方法的可行性和有效性. 相似文献
4.
电力系统短期负荷预测是电力生产部门的重要工作之一,本文利用径向基函数网络(RBF)进行负荷预测,针对RBF在负荷预测中隐含层节点数难求问题,提出了一种改进的最近邻聚类学习算法即可解决该难点,又可提高RBF神经网络收敛速度和负荷预测精度.根据某地区电网的实例进行研究,结果发现本文算法比改进前的算法预测的最小、最大相对误差分别减小0.14和1.12,证明了改进后算法有效性和可行性,为电力系统负荷预测提供了一种新途径. 相似文献
5.
基于事例推理短期负荷预测方法的改进 总被引:2,自引:0,他引:2
针对基于事例推理(CBR)短期负荷预测中的事例库组织,提出第一级按不同的时刻和星期类型粗分类、第二级按照模糊聚类方法细分类的二级分类方法,可以很好地实现不同预测环境之间的相似性和相异性;针对事例的检索,提出模糊优先比的定量属性检索方法,按此方法进行检索不但可以提高检索效率,还可以对检索过程进行控制.实际算例表明,以此方法进行负荷预测的周平均相对误差为2.620%,低于一般的CBR方法和单一预测方法. 相似文献
6.
最小二乘支持向量机(least square support vector machines,LSSVM)在解决小样本、非线性和高维度问题中表现出许多特有的优势.但是,如果输入的训练数据本身存在着大量的噪声和冗余,LSSVM在训练数据时会因抑制它们而削弱本身的推广能力,结构风险无法达到最小化,从而导致收敛速度慢、预测精度不高等缺点.提出了一种基于免疫模糊聚类(immune fuzzy clustering,IFC)的最小二乘支持向量机预测模型,运用免疫模糊聚类算法对历史数据进行预处理,从聚类后的数据提取LSSVM的训练样本,从而提高训练速度和预测精度,克服LSSVM的上述缺点.最后,将该模型运用到短期电力负荷预测中,与经典的SVM和BP神经网络相比具有更好的泛化性能和预测精度. 相似文献
7.
基于正交最小二乘法模糊模型的短期负荷预测 总被引:5,自引:0,他引:5
将正交最小二乘法(OLS)模糊模型用于电力系统短期负荷预测,其推理系统模糊规则的生成、影响因素的选取和隶属度的确定均利用正交最小二乘法从历史数据中直接获得,从而克服了模糊推理系统的知识由咨询专家和经验来产生所造成的知识获取的“瓶颈”现象。相应的数学模型简洁有效。实际算例表明,该方法的预测精度较径向基网络法高0.3%-0.5%,每个模型运算仅需1s左右,具有较强的实用性。 相似文献
8.
在大规模配变负荷预测中,由于负荷特性差别以及受影响因素不同,若使用统一模型,准确率低且泛化能力差,若针对单台配变进行负荷预测建模,计算资源消耗过大.提出了一种基于多维聚类的配变负荷注意力长短期记忆网络(Attention Long Short-Term Memory,Attention-LSTM)短期预测方法.首先提取... 相似文献
9.
电力系统短期负荷预测是电力系统运行管理和实时控制所必须的基本内容,预测结果的准确性对电力系统的安全、优质,经济运行具有重要意义.为提高电力系统短期负荷预测精度,采用三层BP型人工神经网络来建立短期负荷预测模型,将影响负荷的主要因素作为数据样本,进行网络的自我训练和学习,并且在训练和学习的过程中引入误差反方向传播算法(即BP算法)来修正神经网络的连接权重,从而达到对负荷预测模型的改良和完善,进一步贴近实际的负荷变化,其预测的精度也较高. 相似文献
10.
滑坡演变表现出力学参数及力学现象具有明显的不确定性和随机性,使得滑坡位移变形分析成为工程技术难题之一.在传统的灰色GM(1,1)模型基础上,对误差修正方面运用模糊数学思维,采用GM(1,1)-Fuzzy—Markov模型对相对误差进行二次预测.在对云阳凉水井滑坡变形监测成果的分析中,上述模型在一定程度上避免了单-GM(1,1)理论无法预测波动性的局限,实现了较好的预测,整体精度进一步得到提高,证明了该模型在滑坡变形预测方面的可行性与适用性,为滑坡变形预测问题的解决提供了有益的思考与探索. 相似文献
11.
基于模糊回归支持向量机的短期负荷预测 总被引:2,自引:0,他引:2
支持向量机(SVM)是一种新颖的机器学习方法,具有泛化能力强、全局最优和计算速度快等突出优点.模糊数学在不确定性、不精确性及噪声引起的问题上,有其特有的计算分析操作,能有效地分析和处理模糊信息.研究了一种模糊回归支持向量机模型,该模型将两者有机结合,发挥了各自的优点.将其应用到电力系统短期负荷预测,仿真结果表明,所提方法不仅具有与支持向量机方法相同的预测精度,且提供了更多的有用信息. 相似文献
12.
基于自适应模糊神经元网络的电力短期负荷预测 总被引:3,自引:0,他引:3
利用模糊神经元网络(FNN)进行电力短期负荷预测.给出了模糊神经元网络结构和部分输入变量的模糊化.FNN采用LMS(Least-Mean-Square)算法,并用历史负荷数据进行训练.一经训练,网络就能应用于在线负荷预测.在预测过程中,权值按最近的负荷行为自适应调整.测试结果表明,该方法具有较好的精度和较快的速度. 相似文献
13.
基于Markov链的最优化预测模型及其应用研究 总被引:6,自引:0,他引:6
马尔可夫预测方法在预测领域有着广泛的应用.该方法应用的一个重要的问题就是如何估计一步状态转移概率矩阵.在历史资料没有给出系统处于n个状态次数的情况下,给出一步状态转移概率矩阵估计的最优化方法.最后探讨了基于M arkov链的最优化预测模型在长江水质预测中的应用,从而表明该模型的有效性. 相似文献
14.
针对某些发达城市因负荷波动大而导致的长期电力负荷预测精度低问题,提出了一种基于数据驱动线性聚类(data-driven linear clustering,DLC)的自回归积分滑动平均(auto-regressive integral moving average,ARIMA)预测方法。首先,利用线性特征作为聚类标准对每年的大型变电站负荷数据集进行预处理;然后,对得到的每个子序列构建最优自回归积分滑动平均模型,以预测其相应的未来负荷;最后,汇总所有的模型预测结果从而获得电力系统长期负荷预测结果。从误差分析和应用结果可知,理论和实践都验证了所提出的方法在保证建模精度的同时能够降低随机预测误差,从而获得更稳定、更精准的电力系统负荷预测结果。 相似文献
15.
灰色模型在中长期电量预测中只对电量呈近似指数规律单调增长的序列才有较高的预测精度.随着电量变化随机波动性的增强,建立新的修正预测模型是十分必要的.针对灰色模型抗干扰能力差的问题,提出了灰色预测的傅里叶-马尔科夫修正模型,先利用傅里叶级数法,提取周期信息,优化电量变化的指数率,再采用马尔科夫链法,将电量波动随机性嵌入模型之中,从而对灰色预测的原始残差进行二重修正,提高预测模型的适应性和灵活性.通过实例分析以及对比验证表明,该模型有效地提高了预测精度. 相似文献
16.
一种基于模糊逻辑和神经网络的电力负荷预测方法 总被引:12,自引:2,他引:12
应用模糊理论、人工神经网络等智能技术,确定了有效的电力系统短期负荷预测方法,其中着重考虑了天气因素对电网负荷的影响,并开发了实用化的负荷在线预测软件,该软件是基于Windows的应用程序,具有开放式的结构和友好的人机接口,可用于每小时或每15min的负荷预测,测试结果表明,该方法具有良好的预测精度。 相似文献
17.
基于模糊逻辑的Markov链模型辨识方法 总被引:1,自引:0,他引:1
提出一种采用模糊Markov模型(FMM),根据系统实际输入一输出建模的新方法,用于线性及非线性的随机动态系统辨识.讨论了动态系统的Markov链描述,给出了一阶受控Markov链的具体描述及其转移概率矩阵的计算方法;在传统模糊系统的基础上,探讨了建立FMM的方法,给出了FMM的仿真框图和建模的具体步骤;并给出了随机动态系统仿真的应用实例.基于模糊逻辑的Markov链模型解决了传统模糊系统不能处理随机现象的问题,同时也提高了Markov链模型辨识的速度. 相似文献
18.
惯性器件长期贮存性能可靠性灰色马氏链预测 总被引:6,自引:0,他引:6
为了及时掌握武器系统惯性器件的性能,并为延长其使用寿命及维修提供依据,对其进行贮存可靠性评估和预测非常必要.讨论了一种灰色马氏链预测模型的建模方法,此方法兼具灰色模型和马氏链模型的优点,它不仅充分利用了灰色模型动态建模思想,来预报可靠性数据总体趋势,并且根据此总体趋势,进行状态的划分,从而大大克服了马氏链状态矩阵运算量大的缺点,而且拓宽了灰色模型的应用范围,使其适合于波动性较大的随机数据列的预测.最后,对某型导弹速率陀螺仪贮存性能可靠性进行估计,并进行灰色马氏链预测. 相似文献