首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对全CM O S结构制作恒压源方法中存在的功耗过大问题,提出了一种利用CM O S亚阈值特性的恒压源制作方案。该电路基于NM O S和PM O S处于饱和区工作时,两者的栅源电压随温度变化权重不同的原理,将其作相关运算,得到温度系数极低的恒压输出。基于M O S管亚阈值特性产生的电路模块中的偏置电流很小,导致功耗仅50μW。采用中芯国际0.18μm数模混合工艺制造了该电压源结构,测试结果显示,在21~110℃的温度范围内,电路的温度系数达到了2.5×1-0 5/℃。当电源电压达到1.4 V以上时,电路就可以正常工作,且其电源电压抑止比为-57 dB。  相似文献   

2.
一种适应于低电压工作的CMOS带隙基准电压源   总被引:1,自引:0,他引:1  
采用0.5μm标准的CMOS数字工艺,设计了一种适用于低电压工作的带隙基准电压源.其特点为通过部分MOS管工作在亚阈值区,可使电路使用非低压制造工艺,在1.5 V的低电源电压下工作.该电压源具有结构简单、低功耗以及电压温度稳定性好的特点.模拟结果表明,其电源抑制比可达到88 db,在-40~140℃的范围内温度系数可达到1.9×10-5/℃,电路总功耗为37.627 5 μW.  相似文献   

3.
本文设计了一种低电压、低功耗、高电源抑制比CMOS基准电压源。该电路基于工作在亚阈值区的MOS管,利用PTAT电流源与微功耗运算放大器构成负反馈系统以提高电源电压抑制比。SPICE仿真显示,在1V的电源电压下,输出基准电压为609mV,温度系数为72ppm/℃,静态工作电流仅为1.23μA。在1-5V的电源电压变化范围内,电压灵敏度为130μV/V,低频电源电压抑制比为74dB。该电路为全CMOS电路,不需要用到寄生PNP三极管,具有良好的CMOS工艺兼容性。  相似文献   

4.
基准电压对模拟系统的性能与精度有着至关重要的影响.一般的曲率补偿仅能消除与温度相关的二阶项,难以满足某些电路对高精度的要求.现有的电路存在温度系数较高的问题,亟须对更高阶进行补偿.本文提出了一种新的高阶曲率补偿方法,通过利用CMOS晶体管亚阈值特性设计,成功实现了一种低温度系数电压基准电路.该方法首先利用两个不同温度系数的电流流过相同的亚阈值区CMOS晶体管,产生两个具有不同温度特性的栅源电压.然后,通过对这两个不同温度特性的栅源电压进行相减,产生对数电压,并与一阶补偿电压进行加权叠加,从而实现高阶补偿.为了提高电源抑制比(PSRR),该电路采用了高增益负反馈回路,避免了传统电压基准电路中放大器的使用,进一步地降低了功耗.本设计基于0.18 μm CMOS工艺,在Cadence软件下完成电路设计、版图设计与仿真验证.仿真结果显示,该电路正常工作电压范围为1.6~3 V,在2 V的工作电压下,基准电压输出295 mV,在-45~125 ℃范围内温度系数为1.26 ppm/℃,PSRR为51.1 dB@1 kHz,最大静态电流为8.9 μA.结果表明,该基准电压电路能够满足高精度集成电路系统的需求.  相似文献   

5.
为了有效降低模拟集成电路的功耗,提高工艺兼容性,文中提出了一种全CMOS结构的低电压、低功耗基准电压源的设计方法.该方法基于工作在亚阈值区的MOS管,利用PTAT电流源与微功耗运算放大器构成负反馈系统以提高电源电压抑制比.仿真结果表明:在1.0V的电源电压下,输出基准电压为609.mV,温度系数为46×10-6/K,静态工作电流仅为1.23μA;在1.0~5.0V的电源电压变化范围内,电压灵敏度为130μV/V,低频电源电压抑制比为74.0dB.由于使用了无寄生双极型晶体管的全CMOS结构,该电路具有良好的CMOS工艺兼容性.  相似文献   

6.
设计了一种具有新型曲率补偿的电流模式的带隙基准电压源电路,通过在高温时产生一路正温度系数的电流注入到输出端来补偿VBE的高阶负温度系数项实现曲率补偿,从而得到更低温度系数的输出电压.同时采用一种有效的启动电路保证电路上电后可正常启动.该设计基于SMIC 0.13 μm CMOS工艺,在1.2V电源电压下,输出基准电压为500 mV,在-30~130℃范围内温度系数的版图后仿真可达到3.1×10-6 V/℃,整个电路功耗为180 μW.  相似文献   

7.
为提高带隙基准电压源的温度特性,采用Buck电压转移单元产生的正温度系数对VBE的负温度系数进行高阶曲率补偿.同时使用共源共栅结构(Cascode)提高电源抑制比(PSRR).电路采用0.5 μm CMOS工艺实现,在5 V电源电压下,基准输出电压为996.72 mV,温度范围在-25~125 ℃时电路的温漂系数为1.514 ppm/℃;当电源电压在2.5~5.5 V变化时,电压调整率为0.4 mV/V,PSRR达到59.35 dB.  相似文献   

8.
采用GSMC 0.13 μm CMOS工艺设计了一种适合于SOC的低压高精度带隙基准电压源.仿真结果表明.该电路可以在0.9~1.5 V电源电压下工作,输出的基准电压可以稳定在约0.708 V,温度在0~60℃之间时.温度系数不超过44 ppm/K,电源抑制比为66 dB,最大功耗小于0.5 μW.基于GSMC0.13 μmlP8M CMOS工艺几何设计规则实现了其版图.版图面积约为0.2 min×0.15 mm.  相似文献   

9.
采用GSMC 0.13 μm CMOS工艺设计了一种适合于SOC的低压高精度带隙基准电压源.仿真结果表明.该电路可以在0.9~1.5 V电源电压下工作,输出的基准电压可以稳定在约0.708 V,温度在0~60℃之间时.温度系数不超过44 ppm/K,电源抑制比为66 dB,最大功耗小于0.5 μW.基于GSMC0.13 μmlP8M CMOS工艺几何设计规则实现了其版图.版图面积约为0.2 min×0.15 mm.  相似文献   

10.
基于Ahujia基准电压发生器设计了低功耗、高电源抑制比CMOS基准电压发生器电路.其设计特点是采用了共源共栅电流镜,运放的输出作为驱动的同时还作为自身的偏置电路;其次是采用了带隙温度补偿技术.使用CSMC标准0.6μm双层多晶硅n-well CMOS工艺混频信号模型,利用Cadence的Spectre工具对其仿真,结果显示,当温度和电源电压变化范围为-50-150℃和4.5-5.5 V时,输出基准电压变化小于1.6 mV(6.2×10-6/℃)和0.13 mV;低频电源抑制比达到75 dB.电路在5 V电源电压下工作电流小于10 μA.该电路适用于对功耗要求低、稳定度要求高的集成温度传感器电路中.  相似文献   

11.
基于CSMC 0.5 μm CMOS工艺,采用CMOS技术,设计一种高性能的带隙基准电压源.带隙基准电压源输出电压经过电平转换电路,反馈回带隙基准电压源中的运算放大器,可以获得良好的电源特性和带负载能力.采用可修调电阻阵列,精确地控制温度系数.仿真结果表明:在5 V电源电压下,温度系数为8.28×10-6/℃,低频电源抑制比为83 dB.  相似文献   

12.
论文在分析传统带隙基准源的基础上,设计了低电压输出的带隙基准电压源电路.采用Charter 0.35μm标准CMOS工艺,并用Mentor Graphics公司的Eldo仿真器对带隙基准电压源电路的电源特性、温度特性进行了仿真.该带隙基准电压源的温度系数为19-ppm/℃,在室温下当电源电压2.0~3.0 V时,基准电压源输出电压为(915.4±0.15)mV,功耗小于0.2-mW.  相似文献   

13.
针对传统带隙基准电源电压高、功耗高和面积大的问题,提出了一种超低功耗的低电压全金属氧化物半导体(MOS)基准电压源。该基准源通过电压钳制使MOS管工作在深亚阈值区,利用亚阈值区MOS管的阈值电压差补偿热电势的温度特性,同时采用负反馈提高了电压源的线性度与电源抑制比。整个电压源电路采用SMIC 0.18μm互补金属氧化物半导体工艺设计,仿真结果表明:基准电压源的电源电压范围可达0.5~3.3V,线性调整率为0.428%V-1,功耗最低仅为0.41nW;在1.8V电源电压、-40~125℃温度范围内,温度系数为4.53×10-6℃-1,输出电压为230mV;1kHz下电源抑制比为-60dB,芯片版图面积为625μm2。该基准电压源可满足植入式医疗、可穿戴设备和物联网等系统对芯片的低压低功耗要求。  相似文献   

14.
典型的帶隙基准电压源电路是由CMOS工艺产生的具有负温度系数的寄生横向BJT的发射结电压VEB和具有正温度系数的热电压Vt相补偿产生零温度系数的基准帶隙电压源.但是VEB与温度不是线性关系, 因此VREF需要被校正.本文介绍了一种高精度自偏置多段二次曲率补偿的CMOS帶隙基准电压源.采用0.5 μm CMOS工艺、工作电压为3.3 V,该芯片室温下功耗为94 μW.设计在0 ℃~75 ℃有效温度系数达到了0.7 ppm/℃.  相似文献   

15.
新型结构的高性能CMOS带隙基准电压源   总被引:2,自引:0,他引:2  
运用带隙基准的原理,采用0.5 μm的CMOS(Complementary Metal-Oxide Semiconductor)工艺,设计了一个新型结构的高性能CMOS带隙基准电压源.HSPICE仿真结果表明:电源电压VDD最低可达1.9 V,在温度-30~125℃范围内,电源电压VDD在1.9~5.5 V的条件下,输出基准电压VREF=(1.225±0.001 5) V,温度系数为γTC=14.75×10-6/℃,直流电源电压抑制比(PSRR)等于50 dB.在温度为25℃且电源电压为3 V的情况下功耗不到15 μW.整个带隙基准电压源具有良好的性能.  相似文献   

16.
基于华润上华0.5 μm混合信号标准CMOS工艺设计了一种适用于人体局域网(human body area network,BAN)前置处理电路的高性能参考电压源.通过采用正温度系数电阻与负温度系数电阻的温度互补技术,参考电压源获得非常低的温漂特性;通过采用前调整器技术,有效地提高了参考电压源输出电压的电源抑制比.仿真结果显示,在室温及4V电源电压条件下,参考电压源获得了1.3123 V的输出参考电压;当温度在-20-120℃变化时,参考电压源输出电压的温度系数仅为6.0 ppm/℃;当电源电压从3.5V变化到6V时,参考电压源的输出电压在1.312 325-1.312 365 V变化,其变化量仅为40 μV;参考电压源在1 kHz,10 kHz,100 kHz及1 MHz频率处分别获得-98.9 dB,-97.1 dB,-81.7 dB及-57.4 dB的电源抑制比.  相似文献   

17.
低温度系数高电源抑制比带隙基准源的设计   总被引:1,自引:0,他引:1  
基于SMIC 0.18 μm CMOS工艺,设计了一种适用于数模或模数转换等模数混合电路的低温度系数、高电源抑制比的带隙基准电压源.针对传统带隙基准源工作电压的限制,设计采用电流模结构使之可工作于低电源电压,且输出基准电压可调;采用共源共栅结构(cascode)作电流源,提高电路的电源抑制比(PSRR);采用了具有高增益高输出摆幅的常见的两级运放.Cadence仿真结果表明:在1.8V电源电压下,输出基准电压约为534 mV,温度在-25~100℃范围内变化时,温度系数为4.8 ppm/℃,低频电源抑制比为-84 dB,在1.6~2.0 V电源电压变化范围内,电压调整率为0.15 mV/V.  相似文献   

18.
设计了一种指数型曲线补偿的带隙基准源电路.利用Bipolar管的电流增益随温度呈指数型变化的特性,有效地对基准源进行指数型温度补偿.电路具有较低的温度系数,并且结构简单;利用深度负反馈的方法,可有效地抑制电源电压变化给带隙基准源所带来的影响,提高了电源抑制比;为了加大电路的带负载能力,该电路增加了输出缓冲级.用spectre工具对其进行仿真,结果显示在-40 ℃~85 ℃的温度范围内,电路具有12×10-6/℃的低温度系数;当电源电压在4.5 V到5.5 V之间变化时,基准源电压的变化量低于85 μV.电路采用0.6 μm BICMOS工艺实现.  相似文献   

19.
为了实现可变参考电压的电路结构,且降低该参考电压的温度系数,采用CSMC 0.6 μm的CMOS N阱工艺模型,设计了一种新型高精度可调节CMOS带隙基准电压源电路.该电路在传统带隙基准的基础上,增加了一级运算放大器,并详细分析了合理的参数取值,可以通过调整电阻值来得到任意输出参考电压.设计结果表明,在-55℃~125℃温度范围内,该电路不仅具有良好的温度特性,对工艺也不敏感.  相似文献   

20.
通过将具有高阶温度项的MOS管亚阈值区漏电流转换为电压,并与一阶温度补偿电压进行加权叠加,实现二阶温度补偿.采用高增益的运放和负反馈回路提高电源抑制能力,设计一种低温漂高电源电压抑制比带隙基准电压源.基于0.18μm CMOS工艺,完成电路设计与仿真、版图设计与后仿真.结果表明,在1.8 V的电源电压下,电路输出电压为1.22 V;在温度变化为-40~110℃时,温度系数为3.3 ppm/℃;低频电源电压抑制比为-96 dB@100 Hz;静态电流仅为33μA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号