首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
在Gleeble-1500热模拟机上,采用等温压缩试验,研究了一种含Ti和Al的新型钴基耐热合金在850~1 150℃温度范围的压缩变形行为.实验结果表明:该合金具有良好的抗高温流变性能,在850℃及应变速率0.0021~2.1 s-1范围时其峰值流变应力可以达到360~475MPa.合金的流变行为可用Zener-Hollomon参数来描述.  相似文献   

2.
通过不同热加工参数下的热压缩试验,研究了新型阀门钢5Cr9Si3的高温变形行为.5Cr9Si3钢在850~900℃和1000~1100℃温度区间内峰值应力分别随温度的升高而减小,而在900~1000℃温度区间内出现峰值应力随温度升高而增大的异常现象.进一步的微观组织及相结构演化分析表明:5Cr9Si3钢在900~1000℃温度区间内发生了由铁素体向奥氏体的转变,产生奥氏体相变强化;同时,随着变形温度的提高,碳化物的回溶造成碳元素和铬元素对5Cr9Si3基体固溶强化效果增强.相变强化和固溶强化是导致5Cr9Si3在900~1000℃温度区间内流变应力异常变化的主要原因.  相似文献   

3.
Al-Mg-Sc合金热压缩变形的流变应力行为   总被引:3,自引:1,他引:3  
采用热模拟试验对1种Al-Mg-Sc合金进行等温热压缩实验,研究该合金在变形温度为300~450℃,应变速率0.001~1 s-1条件下的热压缩变形流变应力行为.结果表明:该Al-Mg-Sc合金在变形温度为300℃,应变速率0.01~1 s-1的条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征;而在其他条件下,应力达到峰值后随应变的增加而逐渐下降,表现出动态再结晶特征.应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,通过线性回归分析计算出该材料的应变硬化指数n以及变形激活能Q,获得该铝合金高温条件下的流变应力本构方程.  相似文献   

4.
在Gleeble-1500热模拟试验机上对Al-0.80Mg-0.63Si-0.61Cu合金进行等温热压缩试验,研究其在高温压缩变形中的流变应力行为.研究结果表明:流变应力随应变速率的增大而增大,随变形温度的升高而降低,在高应变速率和较低温度条件下,应力出现锯齿波动,呈不连续再结晶特征;该铝合金热压缩变形的流变应力行为可用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能为176.54 kJ/mol.  相似文献   

5.
采用Gleeble-1500D热模拟机进行高温等温压缩试验,研究了半连续铸造Al-15Si铝合金在变形温度为300~500℃,应变速率为0.001~5 s-1条件下的流变应力行为.结果表明,在试验温度范围内,此合金的流变应力随变形温度的升高,应变速率的降低而降低,说明该合金属于正应变速率敏感性材料;可采用Zener-Hollomon参数双曲正弦形式来描述Al-15Si合金高温塑性变形时的流变应力行为;σ解析表达式中材料常数A,α,n值分别为2.07×1012s-1,0.026 MPa-1,4.61,Al-15Si合金的平均热变形激活能Q为180.96 kJ/mol.  相似文献   

6.
6063铝合金高温流变本构方程   总被引:22,自引:0,他引:22  
采用圆柱试样在G1eeb1e—1500热模拟机上进行高温等温压缩实验,研究了6063铝合金在高温塑性变形过程中流变应力的变化规律.结果表明:应变速率和变形温度的变化强烈地影响6063铝合金流变应力,流变应力随变形温度升高而降低,随应变速率提高而增大,在高应变速率下出现明显的动态软化.  相似文献   

7.
采用MATLAB程序建立BT20钛合金高温变形时流变应力的神经网络模型,利用该模型对其他一些热力学状态下材料的流变应力进行了预测。结果表明,在目标函数为0.001、隐层节点数为12、学习率为0.5、动量因子为0.8时,预测数据与试验数据吻合良好,系统误差较小(拟合度为5%);表明已形成了一个知识基的本构关系模型。  相似文献   

8.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Ce合金在变形温度为600~800 ℃、应变速率为0.01~5 s-1条件下进行了热压缩试验,测定了其应力-应变曲线,并通过光学显微镜观察了其热压缩过程中的微观组织.结合两者分析了动态回复和再结晶机制.结果表明,动态再结晶是该合金软化的主要机制.  相似文献   

9.
新型Al-Mg-Si-Cu合金热压缩流变应力研究   总被引:1,自引:0,他引:1  
在Gleeble 1500热模拟机上对一种新型Al-Mg-Si-Cu合金热压缩流变应力行为进行了研究,应变速率为 0.005~5 s-1、变形温度为350~550 ℃.结果表明:在较小应变(<0.15)出现一峰值后流变应力随应变的增加有所降低,表现出较明显的动态软化;在实验范围内,流变应力值随着应变速率减少和变形温度升高而降低,可用Zener-Hollomon参数的幂指数关系描述合金的流变应力行为,其变形激活能Q为236 kJ/mol.图5,参11.  相似文献   

10.
采用圆柱试样在Gleeble-1500热模拟机上对FVS0812耐热铝合金进行等温热压缩实验.变形温度为300~500℃;应变速率为0.001~1s-1.实验结果表明:喷射沉积-挤压态致密FVS0812铝合金材料的真应力-真应变曲线表现为:变形初期流变应力随应变量的增加而迅速增加,达到峰值后,真应力呈下降趋势.可以用Sellars和Tegart提出的双曲正弦形式的本构方程来描述FVS0812铝合金的高温压缩变形时的流变应力行为,其变形激活能Q为368.906 kJ/mol.图8,表1,参6.  相似文献   

11.
一种新型Al-Cu-Li系合金的热压缩流变应力   总被引:6,自引:0,他引:6  
采用Gleeble-1500热模拟机高温等温压缩试验,研究了一种新型Al-Cu-Li系合金在应变速率为0.01~10s-1、变形温度为300~500℃条件下的流变应力特征.结果表明:流变应力随变形温度的升高而降低,随变形速率的提高而增大;采用Z参数的双曲正弦函数描述该合金高温变形的峰值流变应力,获得了峰值流变应力解析式,其热变形激活能为239.02kJ·mol-1.  相似文献   

12.
在变形温度650~950 ℃,应变速率0.001~0.1 s -1的条件下,采用Gleeble-1500热模拟实验机对Ag-Pd-Cu-X合金进行了热模拟压缩实验,分析了合金微观组织及流变应力变化规律,建立了合金的热变形本构方程。结果表明:当变形温度由650 ℃升高到750 ℃以后,合金的热变形软化机制由动态回复为主转向以动态再结晶为主,流变应力呈现出明显的逐渐降低趋势。合金在变形温度750~950 ℃的热变形激活能为210.369 kJ/mol。利用所建立的本构方程计算得到的预测值与实验值吻合良好,证明了所建立本构方程的正确性。  相似文献   

13.
Mg-Al-Zn系合金高温压缩流变应力研究   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上对Mg-Al-Zn系合金(AZ31和AZ80)的高温压缩流变应力行为进行研究.结果表明:材料真应力-应变曲线呈现动态再结晶特征.合金元素含量差异引起材料高温变形行为不同.AZ31合金流变应力行为受变形温度影响:变形温度低于350℃时呈幂指数关系;高于350℃时呈指数关系,应力指数n为7,热变形激活能Q为112 kJ/mol.AZ80合金高温流变应力符合幂指数关系,应力指数n为6,热变形激活能Q为220 kJ/mol.  相似文献   

14.
Al-Fe-V-Si合金高温变形热模拟   总被引:1,自引:1,他引:0  
采用Gleebe 1 5 0 0热模拟机 ,对喷射沉积Al Fe V Si合金在温度为 35 0~ 5 5 0℃、应变速率为1× 1 0 - 4 ~ 1× 1 0 - 2 s- 1 、最大变形程度为 5 0 %的条件下 ,进行高温压缩热模拟实验研究 .在实验基础上 ,分析了合金高温变形时的变形激活能和应力指数以及流变应力与应变速率、变形温度之间的关系 ,为确定该合金的挤压温度提供了实验依据 .实验结果表明 ,该材料具有较高的应力指数和变形激活能 ,而且在 480℃下具有较低的变形抗力 ,又能保证挤压后产品有较好的力学性能 ,因此 ,可以考虑将挤压温度定在 480℃左右为宜  相似文献   

15.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号