首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) play dominant roles in mediating the progression of many inflammatory joint diseases, including rheumatoid arthritis in humans, collagen-induced arthritis in mice and rats, and adjuvant arthritis in rats. Blockade of either cytokine partially controls these diseases. The present study investigated the value of combination anti-cytokine therapy in arthritis: the efficacy of IL-1 receptor antagonist (IL-1ra) and 30 kDa polyethylene glycol (PEG)-conjugated soluble TNF receptor type I (PEG sTNF-RI) given together was assessed in Lewis rats with adjuvant arthritis. Administration of either IL-1ra or PEG sTNF-RI partially alleviated joint inflammation, loss of bone mineral density, and loss of body weight. In contrast, combination of these anti-cytokine treatments exhibited a synergistic capacity to inhibit these changes, even when combining doses of IL-1ra and PEG sTNF-RI that did not affect lesion severity when used alone. Statistical analysis of these adjuvant arthritis data using the isobologram method proved that IL-1ra and PEG sTNF-RI were clearly synergistic in inhibiting inflammation, loss of bone mineral density, loss of body weight, and histopathologic parameters of inflammation and joint destruction. These results suggest that treating autoimmune arthritic diseases with combinations of anti-IL-1 and anti-TNF molecules will achieve superior efficacy compared to the use of a single class of anti-cytokine agent and may allow for dose reductions that could prove useful in minimizing potential side effects.  相似文献   

2.
Interleukin-17: a mediator of inflammatory responses   总被引:14,自引:0,他引:14  
Interleukin-17 (IL-17) is a prototype member of a new cytokine family with six species identified to date. IL-17 is secreted mainly by activated CD4+ and CD8+ T lymphocytes, while its receptor is distributed ubiquitously. IL-17 has been classified as a proinflammatory cytokine because of its ability to induce the expression of many mediators of inflammation, most strikingly those that are involved in the proliferation, maturation and chemotaxis of neutrophils. Increased levels of IL-17 have been associated with several conditions, including airway inflammation, rheumatoid arthritis, intraperitoneal abscesses and adhesions, inflammatory bowel disease, allograft rejection, psoriasis, cancer and multiple sclerosis. This review provides an overview of IL-17 activities, concentrating on those that lead to neutrophil recruitment.Received 13 June 2003; received after revision 27 August 2003; accepted 1 September 2003  相似文献   

3.
Pancreatic beta cell damage caused by pro-inflammatory cytokines interleukin-1β (IL-1β), interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα) is a key event in the pathogenesis of type 1 diabetes. The suppressor of cytokine signaling-1 (SOCS-1) blocks IFNγ-induced signaling and prevents diabetes in the non-obese diabetic mouse. Here, we investigated if SOCS-1 overexpression in primary beta cells provides protection from cytokine-induced islet cell dysfunction and death. We demonstrate that SOCS-1 does not prevent increase in NO production and decrease in glucose-stimulated insulin secretion in the presence of IL-1β, IFNγ, TNFα. However, it decreases the activation of caspase-3, -8 and -9, and thereby, promotes a robust protection from cytokine-induced beta cell death. Our data suggest that SOCS-1 overexpression may not be sufficient in preventing all the biological activities of IFNγ in beta cells. In summary, we show that interference with IFNγ signal transduction pathways by SOCS-1 inhibits cytokine-stimulated pancreatic beta cell death.  相似文献   

4.
Articular inflammatory involvement may be the first sign of gluocecerebrosidase deficiency (Gaucher's disease). Electron microscope study shows specific synovial storage lesions which explain arthritic manifestations. Furthermore presence of mitochondrial microcrystals, (apatite?), suggest microcrystal pathogenesis of Gaucher's arthritis.  相似文献   

5.
Summary Desmosomes or desmosome-like structures do not occur between normal human synovial cells but such structures do develop between the synovial cells in cases of traumatic arthritis, rheumatoid arthritis and villonodular synovitis. Morphological evidence is presented suggesting that such structures develop as a result of the interaction of fibrin trapped between synovial cells and the plasmamembrane of these cells.  相似文献   

6.
Activation of Kupffer cells (KCs) induced that inflammatory cytokine production plays a central role in the pathogenesis of HBV infection. The previous studies from our and other laboratory demonstrated miRNAs can regulate TLR-inducing inflammatory responses to macrophage. However, the involvement of miRNAs in HBV-associated antigen-induced macrophage activation is still not thoroughly understood. Here, we evaluated the effects and mechanisms of miR-155 in HBV-associated antigen-induced macrophage activation. First, co-culture assay of HepG2 or HepG2.2.15 cells and RAW264.7 macrophages showed that HepG2.2.15 cells could significantly promote macrophages to produce inflammatory cytokines. Furthermore, we, respectively, stimulated RAW264.7 macrophages, mouse primary peritoneal macrophages, or healthy human peripheral blood monocytes with HBV-associated antigens, including HBcAg, HBeAg, and HBsAg, and found that only HBeAg could steadily enhance the production of inflammatory cytokines in these cells. Subsequently, miRNAs sequencing presented the up- or down-regulated expression of multiple miRNAs in HBeAg-stimulated RAW264.7 cells. In addition, we verified the expression of miR-155 and its precursors BIC gene with q-PCR in the system of co-culture or HBeAg-stimulated macrophages. Meanwhile, the increased miR-155 expression was positively correlation with serum ALT, AST, and HBeAg levels in AHB patients. Although MAPK, PI3K, and NF-κB signal pathways were all activated during HBeAg treatment, only PI3K and NF-κB pathways were involved in miR-155 expression induced by HBeAg stimulation. Consistently, miR-155 over-expression inhibited production of inflammatory cytokines, which could be reversed by knocking down miR-155. Moreover, we demonstrated that miR-155 regulated HBeAg-induced cytokine production by targeting BCL-6, SHIP-1, and SOCS-1. In conclusion, our data revealed that HBeAg augments the expression of miR-155 in macrophages via PI3K and NF-κB signal pathway and the increased miR-155 promotes HBeAg-induced inflammatory cytokine production by inhibiting the expression of BCL-6, SHIP-1, and SOCS-1.  相似文献   

7.
We found for the first time that IL-4 and IL-13, signature type 2 cytokines, are able to induce periostin expression. We and others have subsequently shown that periostin is highly expressed in chronic inflammatory diseases―asthma, atopic dermatitis, eosinophilc chronic sinusitis/chronic rhinosinusitis with nasal polyp, and allergic conjunctivitis—and that periostin plays important roles in the pathogenesis of these diseases. The epithelial/mesenchymal interaction via periostin is important for the onset of allergic inflammation, in which periostin derived from fibroblasts acts on epithelial cells or fibroblasts, activating their NF-κB. Moreover, the immune cell/non-immune cell interaction via periostin may be also involved. Now the significance of periostin has been expanded into other inflammatory or fibrotic diseases such as scleroderma and pulmonary fibrosis. The cross-talk of periostin with TGF-β or pro-inflammatory cytokines is important for the underlying mechanism of these diseases. Because of its pathogenic importance and broad expression, diagnostics or therapeutic drugs can be potentially developed to target periostin as a means of treating these diseases.  相似文献   

8.
The exact cause of Alzheimer’s disease (AD) is still unknown, but the deposition of amyloid-β (Aβ) plaques and chronic inflammation indicates that immune disturbances are involved in AD pathogenesis. Recent genetic studies have revealed that many candidate genes are expressed in both microglia and myeloid cells which infiltrate into the AD brains. Invading myeloid cells controls the functions of resident microglia in pathological conditions, such as AD pathology. AD is a neurologic disease with inflammatory component where the immune system is not able to eliminate the perpetrator, while, concurrently, it should prevent neuronal injuries induced by inflammation. Recent studies have indicated that AD brains are an immunosuppressive microenvironment, e.g., microglial cells are hyporesponsive to Aβ deposits and anti-inflammatory cytokines enhance Aβ deposition. Immunosuppression is a common element in pathological disorders involving chronic inflammation. Studies on cancer-associated inflammation have demonstrated that myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of tumor cells. Immunosuppression is not limited to tumors, since MDSCs can be recruited into chronically inflamed tissues where inflammatory mediators enhance the proliferation and activation of MDSCs. AD brains express a range of chemokines and cytokines which could recruit and expand MDSCs in inflamed AD brains and thus generate an immunosuppressive microenvironment. Several neuroinflammatory disorders, e.g., the early phase of AD pathology, have been associated with an increase in the level of circulating MDSCs. We will elucidate the immunosuppressive armament of MDSCs and present evidences in support of the crucial role of MDSCs in the pathogenesis of AD.  相似文献   

9.
Summary In experimentally-induced erysipelas polyarthritis, preexisting cartilage canals in articular cartilage play a crucial role during the very onset of the disease. This observation might have some implications for the pathogenesis of other infectious arthritides in young animals or even rheumatoid arthritis in man.  相似文献   

10.
An update on the biology and physiology of resistin   总被引:8,自引:0,他引:8  
Resistin is a newly discovered adipocyte hormone. It is related to resistin-like molecules alpha, beta and gamma in structure and function. Resistin is produced by white and brown adipose tissues but has also has been identified in several other tissues, including the hypothalamus, pituitary and adrenal glands, pancreas, gastrointestinal tract, myocytes, spleen, white blood cells and plasma. The tissue level of resistin is decreased by insulin, cytokines such as tumour necrosis factor alpha, endothelin-1 and increased by growth and gonadal hormones, hyperglycaemia, male gender and some proinflammatory cytokines, such as interleukin-6 and lipopolysaccharide. Resistin antagonizes insulin action, and it is downregulated by rosiglitazone and peroxisome proliferator-activated receptor gamma agonists. Since evidence of a direct link between resistin genotype and human diabetes is still weak, more molecular, physiological and clinical studies are needed to determine the role of resistin in the aetiology of type 2 diabetes.  相似文献   

11.
R Denecke  G Trautwein 《Experientia》1986,42(9):999-1001
In experimentally-induced erysipelas polyarthritis, preexisting cartilage canals in articular cartilage play a crucial role during the very onset of the disease. This observation might have some implications for the pathogenesis of other infectious arthritides in young animals or even rheumatoid arthritis in man.  相似文献   

12.
During the last decade, a growing corpus of evidence has indicated an important role of inflammatory cytokines in the pathogenesis of cerebral lesion following stroke. Recent data suggest that genetics may in turn contribute to modulating the effects of inflammatory cytokines on cerebral infarction (CI). This paper reviews the physiologic characteristics of major inflammatory cytokines and recent research developments related to cell biology and pathobiology in CI. In particular, this review focuses on the genetic aspects of inflammatory cytokines and their implications in CI.Received 22 June 2004; received after revision 11 November 2004; accepted 16 December 2004  相似文献   

13.
Chronic inflammation associated with obesity plays a major role in the development of metabolic diseases, cancer, and autoimmune diseases. Among Th subsets, Th17 cells are involved in the pathogenesis of autoimmune disorders such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Accumulating data suggest that reciprocal interactions between the metabolic systems and immune system play pivotal roles in the pathogenesis of obesity-associated diseases. We herein outline the developing principles in the control of T cell differentiation and function via their cellular metabolism. Also discussed are recent findings that changes in the intracellular metabolism, including fatty acid metabolism, affect the Th17 cell function in obese individuals. Finally, we will also highlight the unique molecular mechanism involved in the activation of retinoid-related orphan receptor-gamma-t (RORγt) by intracellular metabolism and discuss a new therapeutic approach for treating autoimmune disorders through the inhibition of RORγt.  相似文献   

14.
Mild acidic treatment increases the rheumatoid factor titre of some sera and synovial fluids (SF) in rheumatoid arthritis (RA), juvenile RA (JRA) and most frequently in rheumatoid vasculitis. This unmasking of 'hidden' RF in serum and SF samples correlated with the RF-immune complexes (RF-IC) and complexed C4 present in the 3% polyethylene glycol (PEG) precipitates, indicating that by means of 'hidden' RF measurements RF-ICs are possibly detected. This method seems to provide a diagnostic tool for detecting RF-ICs in RA and other related diseases.  相似文献   

15.
For 13 years polyarthritis with specific synovial involvement was observed in a case of type II hyperlipoproteinemia. Microcrystals similar to those described in Gaucher's and Fabry's disease were seen in synovial cytoplasm and mitochondria. These data suggest a microcrystalline pathogenesis for type II hyperlipoproteinemia arthritis as in gout and chondrocalcinosis.  相似文献   

16.
Interleukin-1 and tumor necrosis factor-alpha are potent, multifunctional cytokine mediators of inflammation and immune responses that are produced primarily by activated monocytes and macrophages. Three published papers by different groups have shown that heat shock and chemical stress with heavy metal salts or sulfhydryl reagents, all of which induce the expression of heat shock protein 70 (hsp70), concomitantly inhibit the production of these cytokines in human monocytes and mouse macrophages activated by lipopolysaccharide. These papers are reviewed and discussed in some detail. Other studies suggest that various anti-inflammatory drugs, including acetylsalicyclic acid, auranofin and dexamethasone, can also facilitate HSP expression in macrophages. However, while these studies are interesting, it is clear that not a great deal of work has been done and/or published in this area. Since many pharmaceutical companies are developing cytokine synthesis inhibitors as potential anti-inflammatory drugs, one aim of this article is to emphasize that understanding the molecular mechanism(s) that lead to increased HSP expression and decreased cytokine biosynthesis may assist in achieving this goal.  相似文献   

17.
In recent years the etiopathology of a number of debilitating diseases such as type 2 diabetes, arthritis, atherosclerosis, psoriasis, asthma, cystic fibrosis, sepsis, and ulcerative colitis has increasingly been linked to runaway cytokine-mediated inflammation. Cytokine-based therapeutic agents play a major role in the treatment of these diseases. However, the temporospatial changes in various cytokines are still poorly understood and attempts to date have focused on the inhibition of specific cytokines such as TNF-α. As an alternative approach, a number of preclinical studies have confirmed the therapeutic potential of targeting alpha7 nicotinic acetylcholine receptor-mediated anti-inflammatory effects through modulation of proinflammatory cytokines. This “cholinergic anti-inflammatory pathway” modulates the immune system through cholinergic mechanisms that act on alpha7 receptors expressed on macrophages and immune cells. If the preclinical findings translate into human efficacy this approach could potentially provide new therapies for treating a broad array of intractable diseases and conditions with inflammatory components.  相似文献   

18.
Interleukin-34 is a cytokine with only partially understood functions, described for the first time in 2008. Although IL-34 shares very little homology with CSF-1 (CSF1, M-CSF), they share a common receptor CSF-1R (CSF-1R) and IL-34 has also two distinct receptors (PTP-ζ) and CD138 (syndecan-1). To make the situation more complex, IL-34 has also been shown as pairing with CSF-1 to form a heterodimer. Until now, studies have demonstrated that this cytokine is released by some tissues that differ to those where CSF-1 is expressed and is involved in the differentiation and survival of macrophages, monocytes, and dendritic cells in response to inflammation. The involvement of IL-34 has been shown in areas as diverse as neuronal protection, autoimmune diseases, infection, cancer, and transplantation. Our recent work has demonstrated a new and possible therapeutic role for IL-34 as a Foxp3+ Treg-secreted cytokine mediator of transplant tolerance. In this review, we recapitulate most recent findings on IL-34 and its controversial effects on immune responses and address its immunoregulatory properties and the potential of targeting this cytokine in human.  相似文献   

19.
20.
Integrin antagonists   总被引:4,自引:0,他引:4  
Integrins are a family of cell surface glycoproteins that mediate numerous cell-cell and cell-matrix interactions and are involved in biological processes such as tissue morphogenesis, leukocyte recirculation and migration, wound healing, blood clotting and immune response. Aberrant cell adhesion has been implicated in the pathogenesis of several diseases, including a number of inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease and asthma, as well as cancer and coronary heart disease. As such integrins are seen as excellent targets for the development of therapeutic agents. This report begins with an examination of the structure of integrin molecules and their ligands and then goes on to review the current state of development of antiintegrin antagonists. Received 13 April 1999; received after revision 28 May 1999; accepted 28 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号