首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The cytogenetic hypothesis that common fragile sites (cFSs) are hotspots of cancer breakpoints is increasingly supported by recent data from whole-genome profiles of different cancers. cFSs are components of the normal chromosome structure that are particularly prone to breakage under conditions of replication stress. In recent years, cFSs have become of increasing interest in cancer research, as they not only appear to be frequent targets of genomic alterations in progressive tumors, but also already in precancerous lesions. Despite growing evidence of their importance in disease development, most cFSs have not been investigated at the molecular level and most cFS genes have not been identified. In this review, we summarize the current data on molecularly characterized cFSs, their genetic and epigenetic characteristics, and put emphasis on less-studied cFS genes as potential contributors to cancer development.  相似文献   

4.
The fragile WWOX gene, encompassing the chromosomal fragile site FRA16D, is frequently altered in human cancers. While vulnerable to DNA damage itself, recent evidence has shown that the WWOX protein is essential for proper DNA damage response (DDR). Furthermore, the gene product, WWOX, has been associated with multiple protein networks, highlighting its critical functions in normal cell homeostasis. Targeted deletion of Wwox in murine models suggests its in vivo requirement for proper growth, metabolism, and survival. Recent molecular and biochemical analyses of WWOX functions highlighted its role in modulating aerobic glycolysis and genomic stability. Cumulatively, we propose that the gene product of FRA16D, WWOX, is a functionally essential protein that is required for cell homeostasis and that its deletion has important consequences that contribute to the neoplastic process. This review discusses the essential role of WWOX in tumor suppression and genomic stability and how its alteration contributes to cancer transformation.  相似文献   

5.
6.
Cisplatin-induced genes as potential markers for thyroid cancer   总被引:1,自引:0,他引:1  
Despite the uncontested role of p53 in cycle arrest/cell death after cisplatin treatment, to date the question whether wild-type p53 confers a resistant or sensitive status on the cell is still a matter of debate. Isogenic and isophenotypic human thyroid papillary carcinoma cell line variants for p53 differently expressed cycle genes after cisplatin treatment. Seven genes (CDC6-related protein, CCNC, GAS1, TFDP2, MAPK10/JNK3, WEE1, RPA1) selected after expression on an Atlas human cell cycle array were analyzed by quantitative real-time PCR. While cisplatin treatment increased their expression in p53 wild-type cells it decreased it in cells with inactivated p53 and had no or less effect on cells with mutated p53. These results show that in a well-defined system, different alterations of p53 can lead to a different regulation of genes and hence to either resistance or sensitivity to cisplatin. Moreover for the first time, MAPK10/JNK3 was identified in human thyroid cells and tissue. Four of the genes (CDC6-related protein, CCNC, GAS1 and TFDP2) were decreased in human papillary carcinoma tissues. Relevance of these genes (especially a decrease in GAS1 in thyroid papillary carcinoma) in various malignant pathologies has already been shown. These genes may be explored as new markers in advanced thyroid cancer such as metastatic and anaplastic forms displaying p53 alterations.Received 26 July 2004; received after revision 14 September 2004; accepted 26 October 2004  相似文献   

7.
The acquisition of genomic instability is a triggering factor in cancer development, and common fragile sites (CFS) are the preferential target of chromosomal instability under conditions of replicative stress in the human genome. Although the mechanisms leading to CFS expression and the cellular factors required to suppress CFS instability remain largely undefined, it is clear that DNA becomes more susceptible to breakage when replication is impaired. The models proposed so far to explain how CFS instability arises imply that replication fork progression along these regions is perturbed due to intrinsic features of fragile sites and events that directly affect DNA replication. The observation that proteins implicated in the safe recovery of stalled forks or in engaging recombination at collapsed forks increase CFS expression when downregulated or mutated suggests that the stabilization and recovery of perturbed replication forks are crucial to guarantee CFS integrity.  相似文献   

8.
9.
Desmosomes represent major intercellular adhesive junctions at basolateral membranes of epithelial cells and in other tissues. They mediate direct cell-cell contacts and provide anchorage sites for intermediate filaments important for the maintenance of tissue architecture. There is increasing evidence now that desmosomes in addition to a simple structural function have new roles in tissue morphogenesis and differentiation. Transmembrane glycoproteins of the cadherin superfamily of Ca2+-dependent cell-cell adhesion molecules which mediate direct intercellular interactions in desmosomes appear to be of central importance in this respect. The complex network of proteins forming the desmosomal plaque associated with the cytoplasmic domain of the desmosomal cadherins, however, is also involved in junction assembly and regulation of adhesive strength. This re-view summarizes the structural features of these desmosomal proteins, their function during desmosome assembly and maintenance, and their role in development and disease.Received 5 February 2003; received after revision 14 March 2003; accepted 1 April 2003  相似文献   

10.
11.
The molecular architecture of tight junctions has been a subject of extensive studies that have shown tight junctions to be composed of many peripheral and integral membrane proteins. Claudins have been considered the main tight junction-forming proteins; however, the role they play in a series of pathophysiological events, including human carcinoma development, is only now beginning to be understood. Increasing evidence from in vitro and in vivo studies have identified the influence of claudins on tight junction structure and function, although claudins also participate in cellular contexts other than tight junctions. The aim of this review is to summarize and discuss the conceptual framework concerning claudins, focusing on the involvement of these proteins in epithelial cell polarity establishment, paracellular transport control, signal transduction and tumorigenesis. Received 5 July 2006; received after revision 29 August 2006; accepted 29 September 2006  相似文献   

12.
13.
Résumé Sachant que le facteur entérotoxique peut être développé dans les vibrions non-agglutinables par transfer animal, nous avons déterminé les activités enzymatiques (mucinase, protéase, lécithinase) de ces vibrions. Après ce transfert l'activité lécithinasique a augmenté, et cette activité est semblable à celle d'un virus (V. cholerae). Nous supposons que l'augmentation du facteur entérotoxique est causée par celle de l'activité de la lécithinase.

Thanks are due to Dr.A. Mondal for help and Mr.Manzar Alam for his secretarial assistance.  相似文献   

14.
In mouse ear development, two bHLH genes, Atoh1 and Neurog1, are essential for hair cell and sensory neuron differentiation. Evolution converted the original simple atonal-dependent neurosensory cell formation program of diploblasts into the derived developmental program of vertebrates that generates two neurosensory cell types, the sensory neuron and the sensory hair cell. This transformation was achieved through gene multiplication in ancestral triploblasts resulting in the expansion of the atonal bHLH gene family. Novel genes of the Neurogenin and NeuroD families are upregulated prior to the expression of Atoh1. Recent data suggest that NeuroD and Neurogenin were lost or their function in neuronal specification reduced in flies, thus changing our perception of the evolution of these genes. This sequence of expression changes was accompanied by modification of the E-box binding sites of these genes to regulate different downstream genes and to form inhibitory loops among each other, thus fine-tuning expression transitions.  相似文献   

15.
Several neurological disorders such as stroke, amyotrophic lateral sclerosis and epilepsy result from excitotoxic events and are accompanied by neuronal cell death. These processes engage multiple signalling pathways and recruit numerous molecular components, in particular several families of protein kinases and protein phosphatases. While many investigations have examined the importance of protein kinases in excitotoxicity, protein phosphatases have not been well studied in this context. However, recent advances in understanding the functions of protein phosphatases have suggested that they may play a neuroprotective role. In this review, we summarize some of the recent findings that illustrate the pleiotropic and complex functions of tyrosine and serine/threonine protein phosphatases in the cascade of events leading to neuronal cell death, and highlight their potential intervention in limiting the extent of neuronal death.Received 8 January 2005; received after revision 3 March 2005; accepted 14 March 2005  相似文献   

16.
Summary Interferon (IFN)_proteins interact with cells through specific cell surface receptors, some of which have been purified and cloned. The alpha-IFNs and beta-IFN bind to a common receptor (type I), whereas gamma-IFN binds to a separate receptor (type II). Both types of high-affinity receptors have been demonstrated on a variety of different kinds of cells but in relatively low numbers (102–104/cell). The relationship between IFN binding to receptors and the ways in which IFNs may affect cellular physiology and gene expression is discussed.  相似文献   

17.
sHsps and their role in the chaperone network   总被引:17,自引:0,他引:17  
Small Hsps (sHsps) encompass a widespread but diverse class of proteins. These low molecular mass proteins (15—42 kDa) form dynamic oligomeric structures ranging from 9 to 50 subunits. sHsps display chaperone function in vitro, and in addition they have been suggested to be involved in the inhibition of apoptosis, organisation of the cytoskeleton and establishing the refractive properties of the eye lens in the case of α-crystallin. How these different functions can be explained by a common mechanism is unclear at present. However, as most of the observed phenomena involve nonnative protein, the repeatedly reported chaperone properties of sHsps seem to be of key importance for understanding their function. In contrast to other chaperone families, sHsps bind several nonnative proteins per oligomeric complex, thus representing the most efficient chaperone family in terms of the quantity of substrate binding. In some cases, the release of substrate proteins from the sHsp complex is achieved in cooperation with Hsp70 in an ATP-dependent reaction, suggesting that the role of sHsps in the network of chaperones is to create a reservoir of nonnative refoldable protein.  相似文献   

18.
Interferon receptors and their role in interferon action   总被引:1,自引:0,他引:1  
Interferon (IFN) proteins interact with cells through specific cell surface receptors, some of which have been purified and cloned. The alpha-IFNs and beta-IFN bind to a common receptor (type I), whereas gamma-IFN binds to a separate receptor (type II). Both types of high-affinity receptors have been demonstrated on a variety of receptors and the ways in which IFNs may affect cellular physiology and gene expression is discussed.  相似文献   

19.
Scaffolding proteins are proteins that are required to catalyse, regulate or modulate some step in the assembly of a macromolecular complex. They associate specifically with the nascent protein complex during assembly, but are subsequently removed, and are absent from the mature structure. Scaffolding proteins have been described primarily from viral systems, in particular from the double-stranded DNA bacteriophages, but most likely play a more general role in macromolecular assembly, a fundamental process in all biological systems. Scaffolding proteins may act in a specific fashion, by actively encouraging the formation of correct protein-protein interactions, or more generally by nucleating and promoting assembly. They may also work to ensure the fidelity of the assembly process by preventing the formation of improper interactions, in many ways similar to the role of molecular chaperones in protein folding. In viruses, scaffolding proteins are found both in the form of internal cores and external bracing, and may form elaborate and complex structures. This review will focus on the viral scaffolding proteins, for which an increasing amount of structural and functional information has recently become available.  相似文献   

20.
Cytokinesis is a crucial step in cell proliferation, and remarkably, it is also an important mechanism for developmental regulation in the generation of diverse cell types in eukaryotic organisms. Successful cytokinesis relies on the assembly and activation of an actomyosin-based contractile ring and membrane deposition/fusion in a spatially and temporally precise manner. As such, the molecular pathways governing cytokinesis are highly complex, involving a large number of components forming intricate interactive networks. The complexity of this system, however, may have also provided a rich platform for evolutionary ‘tinkering’ to achieve specific morphogenetic and developmental outcomes. Furthermore, failed or altered cytokinesis appears to contribute to the development of cancer in unexpected ways. Received 25 June 2007; received after revision 20 July 2007; accepted 16 August 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号