首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO2–"FeO"–12wt%ZnO–3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is in-creased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered sub-stantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.  相似文献   

2.
An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The[FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.  相似文献   

3.
We investigated the effect of Al_2O_3 content on the viscosity of CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 (mass ratio of CaO/SiO_2is 1.0,and Al_2O_3 content is 17wt%–29wt%) slags.The results show that the viscosity of the slag increases gradually with increases in the Al_2O_3content in the range of 17wt%to 29wt%due to the role of Al_2O_3 as a network former in the polymerization of the aluminosilicate structure of the slag.With increases in the Al_2O_3 content from 17wt%to 29wt%,the apparent activation energy of the slags also increases from 180.85 to 210.23 k J/mol,which is consistent with the variation in the critical temperature.The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al_2O_3.The application of Iida’s model for predicting the slag viscosity in the presence of Cr_2O_3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al_2O_3 content are at relatively low levels,i.e.,the temperature range of 1673 to 1803 K and the Al_2O_3 content range of 17wt%–29wt%in CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 slag.  相似文献   

4.
We investigated the effect of Al2O3 content on the viscosity of CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3(mass ratio of CaO/SiO2 is 1.0,and Al2O3 content is 17wt%-29wt%)slags.The results show that the viscosity of the slag increases gradually with increases in the Al2O3 content in the range of 17wt%to 29wt%due to the role of Al2O3 as a network former in the polymerization of the aluminosilicate structure of the slag.With increases in the Al2O3 content from 17wt%to 29wt%,the apparent activation energy of the slags also increases from 180.85 to 210.23 kJ/mol,which is consistent with the variation in the critical temperature.The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al2O3.The application of Iida’s model for predicting the slag viscosity in the presence of Cr2O3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al2O3 content are at relatively low levels,i.e.,the temperature range of 1673 to 1803 K and the Al2O3 content range of 17wt%-29wt%in CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3 slag.  相似文献   

5.
The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO–SiO_2–MgO–FeO–MnO–Al_2O_3–TiO_2–CaF_2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step(RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide(Mn O), the apparent activation energy of the demanganization reaction was estimated to be 189.46 k J·mol~(–1) in the current study, which indicated that the mass transfer of Mn O in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the specific reaction interface(SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.  相似文献   

6.
B–Y modified silicide coatings were prepared on Nb–Si based alloy by pack cementation at 1300 ℃ for 10 h. The effect of Y_2O_3 content in the pack mixtures on microstructure and oxidation resistance of the coatings was investigated. The results show that the four coatings have similar structures, which possess a(Nb,X)Si_2 outer layer and a(Nb,X)_5Si_3 transitional layer. Y_2O_3 content in the pack mixtures has an obvious effect on the Si content in the coating. The mass gains of the coatings prepared with 0.5, 1, 2 and 3 wt% Y_2O_3 in pack mixtures are 2.33, 1.96, 2.05 and 2.86 mg/cm~2 after oxidation at 1250 ℃ for 100 h, respectively. The coating prepared with 1 wt% Y_2O_3 exhibits the best oxidation resistance due to the formation of a dense glass-like borosilicate scale.  相似文献   

7.
Co–Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance. Therefore, these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components. Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys. However, the intricate interaction among elements considerably affects the oxidation resistance o...  相似文献   

8.
石墨还原CaO-SiO_2-Al_2O_3-FeO熔渣过程中泡沫化行为黄宗泽,肖兴国,肖泽强,SD辛格在1440~1530C,通过X射线装置观测了石墨活原CaO-SIO;-AI。O。-FeO$渣(CaO)/SIO。一0·75~1·5)中FeO反应过程中?..  相似文献   

9.
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni–Co–Fe-based end-of-life(EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO–Al_2O_3–SiO_2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO–Al_2O_3–SiO_2 slag. The activity coefficients of NiO and CoO in CaO–Al_2O_3–SiO_2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B =(%CaO)/(%SiO_2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.  相似文献   

10.
xY b2O3–15(20Ni–Cu)/(85- x)(NiF e2O4–10NiO)(x = 0, 0.25, 0.5, 0.75, 1.0, 2.0, and 10.0) cermets for aluminum electrolysis were prepared to investigate the effect of Yb2O3 doping on the grain boundary of the cermets after sintering. The results showed that each interface was very clear and that with increasing Yb2O3 content, most of the Yb was evenly distributed at the grain boundary. Moreover, according to the phase composition and microstructural analysis by X-ray diffraction(XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM/EDX), and electron probe microanalysis(EPMA), YbF eO 3 was produced along the grain boundary. The YbF eO 3 was concluded to not only have formed from the interaction between the NiF e2O4 or Fe2O3 component and Yb2O3 at the grain boundary of the cermets, but also from the decomposition of NiF e2O4 into NiO and Fe2O3 and the subsequent reaction of Fe2O3 with Yb2O3. Thus, the production of YbF eO 3 resulted in a cermet with high relative density, good electrical conductivity, and good corrosion resistance.  相似文献   

11.
Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity is relatively high under lower shear rates and relatively low under higher shear rates. In this work, a mold flux that exhibits shear-thinning behavior was developed by adding different amounts of Si_3N_4 to the CaO–SiO_2–CaF_2 mold flux. The shear-thinning behavior was investigated using a rotational viscometer. In addition, the microstructure of the newly prepared slags was studied by high-temperature Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that the mechanism of shear-thinning was attributable to a temporary viscosity loss caused by the one-way shear stress, whereas the corresponding magnitude of shear-thinning was closely related to the degree of polymerization(DP). Finally, the non-Newtonian fluid mold flux was used for laboratory casting tests, which revealed that the mold flux could reduce slag entrapment and positively affect the continuous casting optimization.  相似文献   

12.
The as-cast Mg–6Li–4Zn-x Mn alloys were prepared and extruded at 280℃ with an extrusion ratio of 25:1. The effects of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn-x Mn alloys were investigated in this study. The XRD results show that Mg–6Li–4Zn–x Mn alloys consisted of α-Mg(hcp) + β-Li(bcc)duplex structured matrix, Mg Li2Zn and Mn phases. The grains of the extruded Mg–6Li–4Zn–x Mn alloys were refined by dynamic recrystallization during the extrusion process...  相似文献   

13.
使用DTA,XRD,SEM和EDAX方法研究了氧化铝瓷基片和CaO/Al2O3/SiO2(CAS)系玻璃在高温下的相互作用,发现晶体同时从玻璃表面和氧化铝界面处形核并生长,中间仍是玻璃态,没有均匀形核,晶体从玻璃表面以枝晶状向玻璃内部生长,晶化层厚度大于氧化铝界面处晶化层厚度,氧化铝界面处晶化层主要是由氧化铝晶粒和晶粒间的一些其他球晶组成。非均匀形核的主要位置是晶核剂表面的结构缺陷,晶核剂具有选择性。非均匀形核速率更多地被动力学势垒ΔGD所决定,接触角函数f(θ)的影响较弱。母体玻璃相的化学组成对形核起一定的促进作用。  相似文献   

14.
The effects of tempering holding time at 700°C on the morphology, mechanical properties, and behavior of nanoparticles in Ti–Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy. The equilibrium solid solution amounts of Mo, Ti, and C in ferritic steel at various temperatures were calculated, and changes in the sizes of nanoparticles over time at different Mo contents were analyzed. The experimental results and theoretical calculations were in good agreement with each other and showed that the size of nanoparticles in middle Mo content nano-ferrite(MNF) steel changed the least during aging. High Mo contents inhibited the maturation and growth of nanoparticles, but no obvious inhibitory effect was observed when the Mo content exceeded 0.37 wt%.The tensile strength and yield strength continuously decreased with the tempering time. Analysis of the strengthening and toughening mechanisms showed that the different mechanical properties among the three different Mo content experiment steels were mainly determined by grain refinement strengthening(the difference range was 30–40 MPa) and precipitation strengthening(the difference range was 78–127 MPa). MNF steel displayed an ideal chemical ratio and the highest thermodynamic stability, whereas low Mo content nano-ferrite(LNF) steel and high Mo content nano-ferrite(HNF) steel displayed relatively similar thermodynamic stabilities.  相似文献   

15.
In recent years, the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al–Si alloys. However, the effect of Ni on the wear behaviors of Al–Si alloys and Al matrix composites, particularly at elevated temperatures, remains an understudied area. In this study, Al–Si–Cu–Mg–Ni/20wt% SiC particles(SiCp) composites with varying Ni contents were prepared by using a semisolid stir casting method. The effect of Ni content on the dry sliding wear behavior ...  相似文献   

16.
The addition of silica to steelmaking slags to decrease the binary basicity can promote phosphate enrichment in quenched slag samples. In this study, we experimentally investigated phosphate enrichment behavior in CaO–SiO2–FeO–Fe2O3–P2O5 slags with a P2O5 content of 5.00% and the binary basicity B ranging from 1.0 to 2.0, where the (%FetO)/(%CaO) mass percentage ratio was maintained at 0.955. The experimental results are explained by the defined enrichment degree RC2S-C3P of solid solution 2CaO·SiO2–3CaO·P2O5 (C2S–C3P), where RC2S-C3P is a component of the developed ion and molecule coexistence theory (IMCT)–Ni model for calculating the mass action concentrations Ni of structural units in the slags on the basis of the IMCT. The asymmetrically inverse V-shaped relation between phosphate enrichment and binary basicity B was observed to be correlated in the slags under applied two-stage cooling conditions. The maximum content of P2O5 in the C2S–C3P solid solution reached approximately 30.0% when the binary basicity B was controlled at 1.3.  相似文献   

17.
Monophasic mullite gel with composition 3Al2O3·2SiO2 was prepared by the sol-gel method using aluminium nitrate nonahydrate, aluminium-tri-isopropoxide, and tetraethylorthosili-cate as reagents. Gels with different drying control chemical additives(DCCAs) and polyvinylpyrrolidone(PVP) as spinning assistant were dried at several temperatures. The influences of temperature, DCCAs and PVP in the drying process were investigated. N,N-dimethylformamide(DMF) was the optimum DCCA at 70℃ in the drying process. PVP decreased the solvent volatilization speed and prevented gel crack to a certain extent. FTIR results revealed that free water, ethanol, and isopropanol were completely removed by the drying procedure.  相似文献   

18.
1 Introduction Recently there had considerable interest in Li4Ti5O12 as a potential anode for use in Li-ion batteries. Usually, it was used as an anode combined with a high voltage cathode[1-5]. It has many advantages compared to the currently used graphite. For example, it presents virtually unlimited cycle life due to zero strain or volume change when lithium intercalates into and de-intercalates from[6]. Generally, Li4Ti5O12 was prepared by a solid-state reaction from stoichiometric amounts of Li2CO3 and TiO2. However, the different calcining temperature has strong influence on the structure and electrochemical properties of Li4Ti5O12.  相似文献   

19.
The effect of B2O3 addition on the aqueous tape casting, sintering, microstructure and microwave dielectric properties of Li2O-Nb2O5-TiO2 ceramics has been investigated. The tape casting slurries exhibit a typical shear-thinning behavior without thixotropy, but the addition of B2O3 increases the viscosity of the slurries significantly. It was found that doping of B2O3 can decrease the tensile strength, strain to failure and density of the green tapes. The sintering temperature could be lowed down to 900℃ with the addition of 2 wt% B2O3 due to the liquid phase effect. No secondary phase is observed. The addition of B2O3 does not induce much degradation on the microwave dielectric properties. Optimum microwave dielectric properties of εr 67, Q×f 6560 GHz are obtained for Li2O-Nb2O5-TiO2 ceramics containing 2 wt% B2O3 sintered at 900 1C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) application.  相似文献   

20.
Ti3SiC2 has the potential to replace graphite as reinforcing particles in Cu matrix composites for applications in brush,electrical contacts and electrode materials.In this paper the fabrication of Cu-Ti3SiC2 metal matrix composites prepared by warm compaction powder metallurgy forming and spark plasma sintering(SPS) was studied.The stability of Ti3SiC2 at different sintering temperatures was also studied.The present experimental results indicate that the reinforcing particles in Cu-Ti3SiC2 composites are not stable at and above 800℃.The decomposition of Ti3SiC2 will lead to the formation of TiC and/or other carbides and TiSi2.If purity is the major concern,the processing and servicing temperatures of the Cu-Ti3SiC2 composite should be limited to 750℃ or lower.The composites prepared by warm compaction forming and SPS sintering at 750℃ have lower density when compared with the composites prepared by SPS sintering at 950℃,but their electrical resistivity values are very close to each other and even lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号