首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon deposition behavior on nickel particles was observed within the temperature range from 400 to 800℃ in a pure methane atmosphere. The topography, properties, and molecular structure of the deposited carbon were investigated using field-emission scanning electron microscopy (FESEM), temperature-programmed oxidation (TPO) technology, X-ray diffraction (XRD), and Raman spectroscopy. The deposited carbon is present in the form of a film at 400-450℃, as fibers at 500-600℃, and as particles at 650-800℃. In addition, the structure of the deposited carbon becomes more ordered at higher temperatures because both the TPO peak temperature of deposited carbon and the Raman shift of the G band increase with the increase in experimental temperature, whereas the intensity ratio between the D bands and the G band decreases. An interesting observation is that the carbon deposition rate is suppressed in the medium-temperature range (M-T range) and the corresponding kinetic mechanism changes. Correspondingly, the FWHM of the G and D1 bands in the Raman spectrum reaches a maximum and the intensities of the D2, D3, and D4 bands decrease to low limits in the M-T range. These results indicate that carbon structure parameters exhibit two different tendencies with respect to varying temperature. Both of the two group parameters change dramatically as a peak function with increasing reaction temperature within the M-T range.  相似文献   

2.
A commercial solid oxide fuel cell with a Ni/YSZ anode was characterized under a pure methane atmosphere. The amount of deposited carbon increased with an increase in temperature but decreased when the temperature exceeded 700°C. The reactivity of carbon decreased with increasing deposition temperature. Filamentous carbon was deposited from 400 to 600°C, whereas flake carbon was deposited at 700 and 800°C. With increasing temperature, the intensity ratio of the D band over the sum of the G and D bands was constant at the beginning and then decreased with the transformation of the carbon morphology. The crystallite size increased from 2.9 to 13 nm with increasing temperature. The results also indicated that the structure of the deposited carbon was better ordered with increasing deposition temperature. In comparison with pure Ni powders, the interaction between the YSZ substrate and Ni particles could not only modify the carbon deposition kinetics but also reduce the temperature effect on the structure and reactivity variation of carbon.  相似文献   

3.
Carbon deposition on nickel powders in methane involves three stages in different reaction temperature ranges. Temperature programing oxidation test and Raman spectrum results indicated the formation of complex and ordered carbon structures at high deposition temperatures. The values of I(D)/I(G) of the deposited carbon reached 1.86, 1.30, and 1.22 in the first, second, and third stages, respectively. The structure of carbon in the second stage was similar to that in the third stage. Carbon deposited in the first stage rarely contained homogeneous pyrolytic deposit layers. A kinetic model was developed to analyze the carbon deposition behavior in the first stage. The rate-determining step of the first stage is supposed to be interfacial reaction. Based on the investigation of carbon deposition kinetics on nickel powders from different resources, carbon deposition rate is suggested to have a linear relation with the square of specific surface area of nickel particles.  相似文献   

4.
High volatile bituminous coal was demineralized by a chemical method. The vibrations of the "aromatics" structure of graphite, crystalline or non-crystalline, were observed in the spectra at the 1600 cm-1 region. The band at 1477 cm-1 is assigned as VR band, the band at 1392 cm-1 as VL band and the band at 1540 cm-1 as GR band. Graphite structure remains after chemical leaching liberates oxygenated functional groups and mineral groups. The silicate bands between 1010 and 1100 cm-1 are active in the infrared (IR) spectrum but inactive in the Raman spectrum. Absorption arising from C-H stretching in alkenes occurs in the region of 3000 to 2840 cm-1. Raman bands because of symmetric stretch of water molecules were also observed in the spectrum at 3250 cm-1 and 3450 cm-1. Scanning electron microscopy analysis revealed the presence of a graphite layer on the surface. Leaching of the sample with hydrofluoric acid decreases the mineral phase and increases the carbon content. The ash content is reduced by 84.5wt% with leaching from its initial value by mainly removing aluminum and silicate containing minerals.  相似文献   

5.
In order to improve the anti-oxidation of C/C composites, a SiC–MoSi2multi-phase coating for SiC coated carbon/carbon composites(C/C)was prepared by low pressure chemical vapor deposition(LPCVD) using methyltrichlorosilane(MTS) as precursor, combined with slurry painting from MoSi2 powder. The phase composition and morphology were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) methods, and the deposition mechanism was discussed. The isothermal oxidation and thermal shock resistance were investigated in a furnace containing air environment at 1500 1C. The results show that the as-prepared SiC–MoSi2coating consists of MoSi2 particles as a dispersing phase and CVD–SiC as a continuous phase. The weight loss of the coated samples is 1.51% after oxidation at 1500 1C for 90 h, and 4.79% after 30 thermal cycles between 1500 1C and room temperature. The penetrable cracks and cavities in the coating served as the diffusion channel of oxygen, resulted in the oxidation of C/C composites, and led to the weight loss in oxidation.  相似文献   

6.
Chromium nitride(Cr2N) thin films were prepared by a DC magnetron sputtering technique. The deposition temperature was raised from 50 to 300°C, and its influence on the film structure and refractive index was investigated. X-ray diffraction analysis shows that the crystalline structure of the films transforms from the(101) to(002) oriented hexagonal Cr2 N phase as the increase of substrate temperature above 50°C, and a highly textured film grows at 100°C. An empirical relation between the crystalline orientation and infrared active modes of the films is obtained, i.e., the Fourier transform infrared(FTIR) spectrum of the film prepared at 50°C exhibits only A1(TO) mode. The prominent peak in the FTIR spectra of the film prepared above 50°C is assigned to the E1(TO) mode and is correlated with the(002) or c-axis oriented hexagonal wurtzite phase of Cr2 N. In the surface analysis of atomic force microscopy, a transformation from the featureless surface to columnar-type morphology is observed with the increase of substrate temperature from 50 to 100°C, exhibiting c-axis oriented crystallite growth. A further increase in substrate temperature to 200°C causes the c-axis crystallites to merge, resulting in the formation of voids. The refractive index(n) of the deposited films is obtained using spectroscopic ellipsometry.  相似文献   

7.
The structural parameters of nine Indian coals were determined by X-ray diffraction (XRD) and Raman spectroscopy. The study revealed that the coals contain crystalline carbon of turbostratic structure with amorphous carbon. The stacking height (Lc) and interlayer spacing (d002) of the crystallite structure of the coals ranged from 1.986 to 2.373 nm and from 0.334 to 0.340 nm, respectively. The degree of graphitization was calculated to range from 42% to 99%, thereby confirming the ordering of the carbon layers with the increase in coal rank. An exponential correlation was observed among the aromaticity (fa), the lateral size (La), and the rank (I20/I26), suggesting that the coal crystallites are nanocrystalline in nature. A very strong correlation was observed between the structural parameters (fa, d002, Lc, the H/C ratio, and I20/I26), the volatile matter content, and the elemental carbon content, indicating the structures of coals are controlled by the degree of contact metamorphism. The Raman spectra exhibited two prominent bands: the graphitic band (G) and the first-order characteristic defect band (D). The deconvolution resulted in five peaks: G, D1, D2, D3, and D4. The intense D1 band, which appeared at ~1350 cm?1, corresponds to a lattice vibration mode with A1g symmetry. The D2 mode, which appeared at ~1610 cm?1, arises from the structural disorder as a shoulder on the G band.  相似文献   

8.
The temperature dependence of surface enhanced Raman scattering of the C70 molecule is reported. The Raman scattering of C70 molecules adsorbed on the surface of a silver mirror was measured at different temperatures. The experimental results indicate that the relative intensities of the Raman features vary with the temperature of the sample. When the temperature decreases from room temperature to 0℃, the relative intensifies of certain Raman bands decrease abruptly. If we like the strongest band 1565cm^-1 as a standard value 100, the greatest decrease approaches to 43%. However, with the further decrease in the temperature these relative intensities increase and resume the value at room temperature. And such a temperature dependence is reversible. Our results show that the adsorption state of the C70 molecules on the silver surface around 0℃ changes greatly with the temperature, resulting in a decrease in relative intensities for some main Raman features of C70 molecule. When the temperature is lower than 0℃, the adsorption state changes continually and more slowly. Synchronously, eight new Raman features, which have not ever been reported in fiterature, are observed in our experiment and this enriches the basic information of the vibrational modes for C70 molecule.  相似文献   

9.
CaO-containing carbon pellets (CCCP) were successfully prepared from well-mixed coking coal (CC) and calcium oxide (CaO) and roasted at different pyrolysis temperatures. The effects of temperature, pore distribution, and carbon structure on the compressive strength of CCCP was investigated in a pyrolysis furnace (350–750°C). The results showed that as the roasting temperature increased, the compressive strength also increased and furthermore, structural defects and imperfections in the carbon crystallites were gradually eliminated to form more organized char structures, thus forming high-ordered CC. Notably, the CCCP preheated at 750°C exhibited the highest compressive strength. A positive relationship between the compressive strength and pore-size homogeneity was established. A linear relationship between the compressive strength of the CCCP and the average stack height of CC was observed. Additionally, a four-stage caking mechanism was developed.  相似文献   

10.
CaO-containing carbon pellets(CCCP) were successfully prepared from well-mixed coking coal(CC) and calcium oxide(CaO) and roasted at different pyrolysis temperatures. The effects of temperature, pore distribution, and carbon structure on the compressive strength of CCCP was investigated in a pyrolysis furnace(350–750°C). The results showed that as the roasting temperature increased, the compressive strength also increased and furthermore, structural defects and imperfections in the carbon crystallites were gradually eliminated to form more organized char structures, thus forming high-ordered CC. Notably, the CCCP preheated at 750°C exhibited the highest compressive strength. A positive relationship between the compressive strength and pore-size homogeneity was established. A linear relationship between the compressive strength of the CCCP and the average stack height of CC was observed. Additionally, a four-stage caking mechanism was developed.  相似文献   

11.
The hot ductility of a Fe–0.3C–9Mn–2Al medium Mn steel was investigated using a Gleeble3800 thermo-mechanical simulator. Hot tensile tests were conducted at different temperatures (600–1300°C) under a constant strain rate of 4 × 10?3 s?1. The fracture behavior and mechanism of hot ductility evolution were discussed. Results showed that the hot ductility decreased as the temperature was decreased from 1000°C. The reduction of area (RA) decreased rapidly in the specimens tested below 700°C, whereas that in the specimen tested at 650°C was lower than 65%. Mixed brittle–ductile fracture feature is reflected by the coexistence of cleavage step, intergranular facet, and dimple at the surface. The fracture belonged to ductile failure in the specimens tested between 720–1000°C. Large and deep dimples could delay crack propagation. The change in average width of the dimples was in positive proportion with the change in RA. The wide austenite–ferrite intercritical temperature range was crucial for the hot ductility of medium Mn steel. The formation of ferrite film on austenite grain boundaries led to strain concentration. Yield point elongation occurred at the austenite–ferrite intercritical temperature range during the hot tensile test.  相似文献   

12.
The hot deformation behaviors of a 9 Cr oxide dispersion-strengthened(9 Cr-ODS) steel fabricated by mechanical alloying and hot isostatic pressing(HIP) were investigated. Hot compression deformation experiments were conducted on a Gleeble 3500 simulator in a temperature range of 950–1100°C and strain rate range of 0.001–1 s~(-1). The constitutive equation that can accurately describe the relationship between the rheological stress and the strain rate of the 9 Cr-ODS steel was established, and the deformation activation energy was calculated as 780.817 kJ/mol according to the data obtained. The processing maps of 9 Cr-ODS in the strain range of 0.1–0.6 were also developed. The results show that the region with high power dissipation efficiency corresponds to a completely recrystallized structure. The optimal processing conditions were determined as a temperature range of 1000–1050°C with strain rate between 0.003 and 0.01 s~(-1).  相似文献   

13.
The hot ductility of a Fe–0.3C–9Mn–2Al medium Mn steel was investigated using a Gleeble 3800 thermo-mechanical simulator. Hot tensile tests were conducted at different temperatures(600–1300°C) under a constant strain rate of 4 × 10~(-3) s~(-1). The fracture behavior and mechanism of hot ductility evolution were discussed. Results showed that the hot ductility decreased as the temperature was decreased from1000°C. The reduction of area(RA) decreased rapidly in the specimens tested below 700°C, whereas that in the specimen tested at 650°C was lower than 65%. Mixed brittle–ductile fracture feature is reflected by the coexistence of cleavage step, intergranular facet, and dimple at the surface. The fracture belonged to ductile failure in the specimens tested between 720–1000°C. Large and deep dimples could delay crack propagation. The change in average width of the dimples was in positive proportion with the change in RA. The wide austenite–ferrite intercritical temperature range was crucial for the hot ductility of medium Mn steel. The formation of ferrite film on austenite grain boundaries led to strain concentration. Yield point elongation occurred at the austenite–ferrite intercritical temperature range during the hot tensile test.  相似文献   

14.
The non-resonant vibrational Raman spectra of nitrogen-doped tetrahedral amorphous carbon have been calculated from first principles, including the generation of a structural model, and the calculation of vibrational frequencies, vibrational eigenmodes and Raman coupling tensors. The calculated Raman spectra are in good agreement with the experimental results. The broad band at around 500 cm^-1 arises from mixed bonds. The T peak originates from the vibrations of sp^3 carbon and the G peak comes from the stretching vibrations of sp^2-type bonding of C=C and C=N. The simulation results indicate the direct contribution of N vibrations to Raman spectra.  相似文献   

15.
Al_2O_3/Ti O_2/Fe_2O_3/Yb_2O_3 composite powder was synthesized via the sol–gel method. The structure,morphology,and radar-absorption properties of the composite powder were characterized by transmission electron microscopy,X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes(100–200 nm) and the other is spherical Al_2O_3 particles(smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76(at 15.68 GHz) in the frequency range of 2–18 GHz. The electromagnetic absorption of waves covers 2–18 GHz with the matching thicknesses of 1.5–4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16–9.76 GHz,and the maximum absorption peak reaches-20.18 d B with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.  相似文献   

16.
Urchin-like Sn–ZnO–C composite have been successfully prepared by thermal annealing of ZnSn(OH)6precursor in acetylene/argon gas(1/9;v/v).The phase of the urchin-like Sn–ZnO–C has been characterized by X-ray diffraction(XRD)and Raman spectrum.The images of scanning electron microscopy(SEM)and transmission electron microscope(TEM)demonstrate that the Sn–ZnO–C composite with an average of 3 lm in diameter is composed of many core–shell nanowires and carbon nanotubes emanated from the center.The thermal annealing temperature and time have crucial effects on the formation of urchin-like structure and carbon content of the Sn–ZnO–C composites.As an anode for lithium-ion batteries,the urchin-like Sn–ZnO–C composite delivers a discharge capacity of 1,034.5 mAh/g in initial cycle and 571.9 mAh/g reversible discharge capacity after 25 cycles at a current density of 50 mA/g.The superior energy storage properties highlight the urchin-like Sn–ZnO–C composite as a potential alternative anode material in lithium-ion batteries.  相似文献   

17.
Cobalt ferrite nanoparticles (CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition (TCVD). In this process, acetylene gas (C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750°C. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples’ magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond- like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size.  相似文献   

18.
Crystalline carbon nitride thin films were prepared on Si (100) substrates by a microwave plasma chemical vapor deposition method, using CH4/N2 as precursor gases. The surface morphologies of the carbon nitride films deposited on Si substrate at 830℃ are consisted of hexagonal crystalline rods. The effect of substrate temperature on the formation of carbon nitrides was investigated. X-ray photoelectron spectroscopy analysis indicated that the maximum value of N/C in atomic ratio in the films deposited at a substrate temperature of 830℃ is 1.20, which is close to the stoichiometric value of C3N4. The X-ray diffraction pattern of the films deposited at 830℃ indicates no amorphous phase in the films, which are composed of β- and α-C3N4 phase containing an unidentified C-N phase. Fourier transform infrared spectroscopy supports the existence of C-N covalent bond.  相似文献   

19.
We have investigated the temperature dependence of elastic modulus for various ferroelectric ceramics in the temperature range of 20–90°C.The Na0.5Bi0.5TiO3(NBT)ceramics has a phase transition at 200°C,thus exhibits minimal change in elastic modulus up to 90°C,while the elastic modulus of the BaZr0.07Ti0.93O3(BZT-7)shows 12.5%change at the phase transition temperature of70°C and that of the BaZr0.15Ti0.85O3(BZT-15)ceramics shows 34.6%change at the phase transition temperature of60°C.The variations of elastic modulus will affect the temperature stability of devices made by these lead-free ferroelectric ceramics.  相似文献   

20.
NaClO4 aerosol particles with diameter of 5-20 microns are deposited on the ZnSe substrate. An FTIR-ATR chamber on the ZnSe substrate is set up to observe the structural changes of NaClO4 aerosol particles at crystallization relative humidity (CRH) and deliquescence relative humidity (DRH). With the decrease of RH (relative humidity) from 96% to 24% in the efflorescence process, the absorbance of O-H stretching band of the aerosol solutions continuously decreases. A sudden decrease of the water peak is observed at RH20%, where solid particles form. Very small amount of residual interfacial water, with two weak peaks at 3602 and 3533 cm^-1, can still be resolved in the FTIR-ATR spectra of the solid particles. In the deliquescence process of the same sample, little spectral changes are observed when the value of RH varies from 5% to 29%. Before the abrupt increase of the O-H stretching band at the DRH of about RH46%, a pre-deliquescence process is observed, i.e. in the RH range between 33% and 46%, there is really a slow absorbance increase for the peak area of O-H stretching band. The O-H stretching band shows an arciform O-H en- velope, totally different from not only the FTIR-ATR spectra of ClO4^- solutions either under supersaturated state or in diluted state, but also the characteristic of the residually interfacial water discussed in the efflorescence process. Such kind of water is considered as pure water, indicating that small amount of water aggregates in the microspaces of solid aerosol particles due to the capillary cohesion effect. When the RH arrives at RH44%, two weak shoulders at 3384 and 3260 cm^-1 can be resolved, and the solid NaClO4 particles begin to be dissolved by increasing capillary cohesion water. The spectral characteristic of the v3-ClO4^- band also shows the transition from solid particles to mainly solvated ClO4^- ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号