共查询到19条相似文献,搜索用时 78 毫秒
1.
采用混合体积元方法求解一类四阶半线性发展方程的初边值问题,在三角剖分下构造了问题的半离散混合体积元格式,并进行了收敛性分析,最后给出数值算例支持了文中理论结果. 相似文献
2.
丰连海 《郑州大学学报(理学版)》2002,34(2):33-35
针对一维抛物型方程边值问题提出了一种新型有有限体积元格式,证明了该格式按离散 L^2模及离散H^1半模具二阶收敛精度 。最后,具体 算例表明,该格式计算效果良好。 相似文献
3.
研究了一类四阶半线性抛物方程,对其提出有限差分格式,并进行收敛性分析,得到L^2范数下的误差估计。 相似文献
4.
采用混合体积元方法求解一类四阶抛物型积分-微分方程的初边值问题,构造了问题的半离散混合体积元格式,得到了误差估计结果。 相似文献
5.
针对一维常系数对流扩散方程第三边值问题提出一种紧有限体积格式,该格式形成的线性代数方程组具有三对角性质,可以使用追赶法求解.用能量估计法证明了格式按照离散L2范数、H1半范数和最大模范数均具有4阶收敛精度.数值算例验证了理论分析的正确性,并说明了格式的有效性. 相似文献
6.
与标准的混合体积元方法不同,用梯度算子作用压力方程后,将两个方程均在对偶单上积分,得到新的混合体积元格式,且得到了速度H(div)模和压力L2模的最优误差估计. 相似文献
7.
基于平面区域的矩形网格剖分和双线性插值基函数生成的有限元空间,将有限体积元方法应用到Sobolev方程,给出了计算格式,并进行理论分析,得到了有限体积元解的最优阶H1模误差估计. 相似文献
8.
采用混合体积元方法在三角网格上求解一类四阶抛物型积分-微分方程的初边值问题,构造了问题的半离散混合体积元格式,得到了误差估计结果. 相似文献
9.
研究半线性四阶强阻尼波动方程混合有限元方法,给出了混合投影和一些重要引理,证明了半离散格式误差估计. 相似文献
10.
曹玉翡 《山东大学学报(理学版)》2005,40(5):23-29
对一类非线性抛物方程提出了在矩形网格上的混合有限体积格式,采用矩形区域上的最低阶Raviart-Thomas混合元空间,通过理论分析得到最优的误差估计. 相似文献
11.
于顺霞 《天津师范大学学报(自然科学版)》2014,(2):9-11,15
研究一类二阶双曲型方程.通过引入空间和时间的一阶导数得到了混合Galerkin变分形式,进而导出方程的H1-Galerkin混合有限元方法的二层全离散格式,其中时间方向采用中心差商离散,得到了未知函数及流量的最优阶误差估计. 相似文献
12.
针对二维黏性波动方程,利用Crank-Nicolson格式建立了在时间和空间方向具有二阶精度的差分格式,通过添加扰动项进行算子分解,得到了一类局部一维差分格式,证明了该格式按离散L^2模具有二阶收敛精度.具体算例验证了算法的有效性和精确性. 相似文献
13.
考虑四阶微积分吊桥模型在分段线性多项式空间上的有限元逼近.引入Newton型迭代法来处理积分项,大大提高了计算效率.给出相应的误差分析以及数值结果来说明方法可行性和有效性. 相似文献
14.
针对两点混合边值问题提出了基于三次混合插值的超收敛有限体积元方法,该方法形成的线性代数方程组具有五对角性质,可以使用带状消去法求解.证明了格式按照离散日。半范数具有四阶收敛精度.最后,通过数值算例验证了结论的正确性. 相似文献
15.
提出了三维非齐次双曲型方程的一种新型局部一维有限体积元方法,导出了具体的计算格式,证明了该格式按离散L2范数或离散H1半范数均具有二阶收敛精度.具体算例表明该算法计算效果良好. 相似文献
16.
提出了一类考虑数值积分影响的有限体积法,用于求解带有混合边界条件的椭圆边值问题,分析了此方法的误差,并给出了数值算例. 相似文献
17.
关于非线性双曲型方程半离散有限元方法的误差估计 总被引:2,自引:0,他引:2
戴培良 《苏州大学学报(医学版)》2001,17(1):25-30
主要研究了非线性双曲型方程半离散有限元方法,利用椭圆投影,获得了半离散有限元逼近的一些误差估计。 相似文献
18.
通过引入变量将方程从形式上降阶,提出了求解一类拟线性神经传播方程的紧局部一维(LOD)差分格式,并应用能量方法给出了格式的误差估计,得到该格式在L^2模下具有O(Δt^2+h^4)的精度.最后通过数值例子验证了算法的有效性. 相似文献
19.
针对三维非齐次双曲方程第一边值问题提出了一种新型的LOD有限差分格式,此格式能够将高维问题完全分解为一系列一维问题进行求解,克服了LOD格式源项难以分解、过渡层条件不易确定的缺陷.证明了该LOD有限差分格式按照离散L^2模具有二阶收敛精度,与抛物型方程相比,源项的扰动达到了△t^4,从而使△t的取法有更大的灵活性. 相似文献