首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A frame-shift mutation in the cystic fibrosis gene.   总被引:22,自引:0,他引:22  
M B White  J Amos  J M Hsu  B Gerrard  P Finn  M Dean 《Nature》1990,344(6267):665-667
Cystic fibrosis (CF) is a common recessive lethal genetic disorder, affecting 1 in 1,600 Caucasians. The disease causes defective regulation of chloride-ion transport in exocrine cells. Although in all CF families the disease is linked to a locus on chromosome 7q31, there is clinical heterogeneity in the severity of the disease and the age at which it is diagnosed. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. A three-nucleotide deletion (delta F508) causing the loss of a phenylalanine residue in the tenth exon of the CFTR gene has been found on 70% of CF chromosomes. We have now characterized a CF family in which neither parent of the affected individual carries the common mutation, and identified a two-nucleotide insertion in the CF allele of the mother. The mutation introduces a termination codon in exon 13 of the CFTR gene at residue 821, and is predicted to result in the production of a severely truncated nonfunctional protein.  相似文献   

2.
A E Trezise  M Buchwald 《Nature》1991,353(6343):434-437
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). The principal manifestations of CF include increased concentration of Cl- in exocrine gland secretions, pancreatic insufficiency, chronic lung disease, intestinal blockage and malabsorption of fat, and male and female infertility. Insight into the function of CFTR can be gained by correlating its cell-specific expression with the physiology of those cells and with CF pathology. Determination of CFTR messenger RNA in rat tissues by in situ hybridization shows that it is specifically expressed in the ductal cells of the pancreas and the salivary glands. In the intestine, decreasing gradients of expression of the CFTR gene are observed on both the crypt-villus and the proximal-distal axes. This expression is consistent with CFTR being responsible for bidirectional Cl- transport, secretion in the intestinal crypts and reabsorption in the silivary gland ducts, and suggests that in these tissues CFTR functions as a regulated Cl- channel. In the lung, a broad band of hybridization includes the mucosa and submucosa of the bronchi and bronchioles. In the testis, CFTR expression is regulated during the cycle of the seminiferous epithelium. Postmeiotic expression is maximal in the round spermatids of stages VII and VIII, suggesting that CFTR plays a critical role in spermatogenesis and that deficiency of this function contributes to CF male infertility.  相似文献   

3.
Choi JY  Muallem D  Kiselyov K  Lee MG  Thomas PJ  Muallem S 《Nature》2001,410(6824):94-97
Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Initially, Cl- conductance in the sweat duct was discovered to be impaired in CF, a finding that has been extended to all CFTR-expressing cells. Subsequent cloning of the gene showed that CFTR functions as a cyclic-AMP-regulated Cl- channel; and some CF-causing mutations inhibit CFTR Cl- channel activity. The identification of additional CF-causing mutants with normal Cl- channel activity indicates, however, that other CFTR-dependent processes contribute to the disease. Indeed, CFTR regulates other transporters, including Cl(-)-coupled HCO3- transport. Alkaline fluids are secreted by normal tissues, whereas acidic fluids are secreted by mutant CFTR-expressing tissues, indicating the importance of this activity. HCO3- and pH affect mucin viscosity and bacterial binding. We have examined Cl(-)-coupled HCO3- transport by CFTR mutants that retain substantial or normal Cl- channel activity. Here we show that mutants reported to be associated with CF with pancreatic insufficiency do not support HCO3- transport, and those associated with pancreatic sufficiency show reduced HCO3- transport. Our findings demonstrate the importance of HCO3- transport in the function of secretory epithelia and in CF.  相似文献   

4.
Cystic fibrosis is associated with a defect in epithelial chloride ion transport which is caused by mutations in a membrane protein called CFTR (cystic fibrosis transmembrane conductance regulator). Heterologous expression of CFTR produces cyclicAMP-sensitive Cl(-)-channel activity. Deletion of phenylalanine at amino-acid position 508 in CFTR (delta F508 CFTR) is the most common mutation in cystic fibrosis. It has been proposed that this mutation prevents glycoprotein maturation and its transport to its normal cellular location. We have expressed both CFTR and delta F508 CFTR in Vero cells using recombinant vaccinia virus. Although far less delta F508 CFTR reached the plasma membrane than normal CFTR, sufficient delta F508 CFTR was expressed at the plasma membrane to permit functional analysis. delta F508 CFTR expression induced a reduced activity of the cAMP-activated Cl- channel, with conductance, anion selectivity and open-time kinetics similar to those of CFTR, but with much greater closed times, resulting in a large decrease of open probability. The delta F508 mutation thus seems to have two major consequences, an abnormal translocation of the CFTR protein which limits membrane insertion, and an abnormal function in mediating Cl- transport.  相似文献   

5.
Cystic fibrosis (CF) is a common lethal genetic disease that manifests itself in airway and other epithelial cells as defective chloride ion absorption and secretion, resulting at least in part from a defect in a cyclic AMP-regulated, outwardly-rectifying Cl- channel in the apical surface. The gene responsible for CF has been identified and predicted to encode a membrane protein termed the CF transmembrane conductance regulator (CFTR). Identification of a cryptic bacterial promoter within the CFTR coding sequence led us to construct a complementary DNA in a low-copy-number plasmid, thereby avoiding the deleterious effects of CFTR expression on Escherischia coli. We have used this cDNA to express CFTR in vitro and in vivo. Here we demonstrate that CFTR is a membrane-associated glycoprotein that can be phosporylated in vitro by cAMP-dependent protein kinase. Polyclonal and monoclonal antibodies directed against distinct domains of the protein immunoprecipitated recombinant CFTR as well as the endogenous CFTR in nonrecombinant T84 cells. Partial proteolysis fingerprinting showed that the recombinant and non-recombinant proteins are indistinguishable. These data, which establish several characteristics of the protein responsible for CF, will now enable CFTR function to be studied and will provide a basis for diagnosis and therapy.  相似文献   

6.
Cystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how the loss of CFTR function first disrupts airway host defence has remained uncertain. To investigate the abnormalities that impair elimination when a bacterium lands on the pristine surface of a newborn CF airway, we interrogated the viability of individual bacteria immobilized on solid grids and placed onto the airway surface. As a model, we studied CF pigs, which spontaneously develop hallmark features of CF lung disease. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly kills bacteria in vivo, when removed from the lung and in primary epithelial cultures. Lack of CFTR reduces bacterial killing. We found that the ASL pH was more acidic in CF pigs, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and, conversely, increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defence defect to the loss of CFTR, an anion channel that facilitates HCO(3)(-) transport. Without CFTR, airway epithelial HCO(3)(-) secretion is defective, the ASL pH falls and inhibits antimicrobial function, and thereby impairs the killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF, and that assaying bacterial killing could report on the benefit of therapeutic interventions.  相似文献   

7.
Defective acidification of intracellular organelles in cystic fibrosis.   总被引:37,自引:0,他引:37  
J Barasch  B Kiss  A Prince  L Saiman  D Gruenert  Q al-Awqati 《Nature》1991,352(6330):70-73
The phenotype of cystic fibrosis (CF) includes abnormalities in transepithelial transport of Cl- (refs 1-5), decreased sialylation and increased sulphation and fucosylation of glycoproteins, and lung colonization with Pseudomonas. It is not apparent how these abnormalities are interrelated, nor how they result from loss of function of the CF gene-encoded transmembrane regulator (CFTR). We have previously shown that that the pH of a secretory granule is regulated by the vesicular conductance for Cl- (ref. 11). Here we find defective acidification in CF cells of the trans-Golgi/trans-Golgi network, of prelysosomes and of endosomes as a result of diminished Cl- conductance. Sialytation of proteins and lipids is reduced and ligand traffic altered. These abnormalities can result from defective acidification because vacuolar pH regulates glycoprotein processing and ligand transport. The CF phenotype is similar to that of alkalinized cells and acidification-defective mutatants.  相似文献   

8.
The ATP-binding cassette (ABC) superfamily of transport systems now includes over thirty proteins that share extensive sequence similarity and domain organization. This superfamily includes the well characterized periplasmic binding protein-dependent uptake systems of prokaryotes, bacterial exporters, and eukaryotic proteins including the P-glycoprotein associated with multidrug resistance in tumours (MDR), the STE6 gene product that mediates export of yeast a-factor mating pheromone, pfMDR that is implicated in chloroquine resistance of the malarial parasite, and the product of the cystic fibrosis gene (CFTR). Here we present a tertiary structure model of the ATP-binding cassettes characteristic of this class of transport system, based on similarities between the predicted secondary structures of members of this family and the previously determined structure of adenylate kinase. This model has implications for both the molecular basis of transport and cystic fibrosis and provides a framework for further experimentation.  相似文献   

9.
The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (delta F508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.  相似文献   

10.
11.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane Cl- channel regulated by cyclic AMP-dependent phosphorylation and by intracellular ATP. Mutations in CFTR cause cystic fibrosis partly through loss of cAMP-regulated Cl- permeability from the plasma membrane of affected epithelia. The most common mutation in cystic fibrosis is deletion of phenylalanine at residue 508 (CFTR delta F508) (ref. 10). Studies on the biosynthesis and localization of CFTR delta F508 indicate that the mutant protein is not processed correctly and, as a result, is not delivered to the plasma membrane. These conclusions are consistent with earlier functional studies which failed to detect cAMP-stimulated Cl- channels in cells expressing CFTR delta F508 (refs 16, 17). Chloride channel activity was detected, however, when CFTR delta F508 was expressed in Xenopus oocytes, Vero cells and Sf9 insect cells. Because oocytes and Sf9 cells are typically maintained at lower temperatures than mammalian cells, and because processing of nascent proteins can be sensitive to temperature, we tested the effect of temperature on the processing of CFTR delta F508. Here we show that the processing of CFTR delta F508 reverts towards that of wild-type as the incubation temperature is reduced. When the processing defect is corrected, cAMP-regulated Cl- channels appear in the plasma membrane. These results reconcile previous contradictory observations and suggest that the mutant most commonly associated with cystic fibrosis is temperature-sensitive.  相似文献   

12.
Gadsby DC  Vergani P  Csanády L 《Nature》2006,440(7083):477-483
CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.  相似文献   

13.
Localization of cystic fibrosis locus to human chromosome 7cen-q22   总被引:5,自引:0,他引:5  
Cystic fibrosis (CF) is the most common genetic disease in Caucasian populations, with an incidence of 1 in 2,000 live births in the United Kingdom, and a carrier frequency of approximately 1 in 20. The biochemical basis of the disease is not known, although membrane transport phenomena associated with CF have been described recently. Consanguinity studies have shown that the inheritance of CF is consistent with it being a recessive defect caused by a mutation at a single autosomal locus. Eiberg et al. have reported a genetic linkage between the CF locus and a polymorphic locus controlling activity of the serum aryl esterase paraoxonase (PON). The chromosomal location of PON, however, is not known. Linkage to a DNA probe, DOCR1-917, was also recently found at a genetic distance of approximately 15 centimorgans (L.-C. Tsui and H. Donnis-Keller, personal communication), but no chromosomal localization was given. Here we report tight linkage between the CF locus and an anonymous DNA probe, pJ3.11, which has been assigned to chromosome 7cen-q22.  相似文献   

14.
Davies K 《Nature》1992,357(6377):425
More than 98% of mutations causing cystic fibrosis can be detected in a Celtic population in Brittany, France. What, though, are the prospects for screening of entire populations for carriers?... Even if technology improves to the point where 95% of CF mutations can be detected routinely, and population screening becomes feasible, a more contentious matter is that of counselling and education, especially as there is every reason to believe that the lifespan of CF patients will continue to grow as therapies improve....  相似文献   

15.
Complete mutagenesis of the HIV-1 protease   总被引:38,自引:0,他引:38  
Retroviruses encode a protease which needs to be active for the production of infectious virions. A disabling mutation in the protease results in the production of non-infectious virus particles and examination of proteins from these mutant virions reveals unprocessed Gag and Gag-Pol precursor proteins, the substrates of the viral protease. Each amino acid of the HIV-1 protease was individually mutated using a simple mutagenesis procedure which is capable of introducing and identifying missense mutations in each residue of a protein. Phenotypic screening of these mutants in a heterologous assay system reveals three regions within the protease where multiple consecutive amino-acid residues are sensitive to mutation. These results show that random mutagenesis can be used to identify functionally important regions within a protein. Mutants with conditional phenotypes have also been identified within this collection.  相似文献   

16.
Vergani P  Lockless SW  Nairn AC  Gadsby DC 《Nature》2005,433(7028):876-880
ABC (ATP-binding cassette) proteins constitute a large family of membrane proteins that actively transport a broad range of substrates. Cystic fibrosis transmembrane conductance regulator (CFTR), the protein dysfunctional in cystic fibrosis, is unique among ABC proteins in that its transmembrane domains comprise an ion channel. Opening and closing of the pore have been linked to ATP binding and hydrolysis at CFTR's two nucleotide-binding domains, NBD1 and NBD2 (see, for example, refs 1, 2). Isolated NBDs of prokaryotic ABC proteins dimerize upon binding ATP, and hydrolysis of the ATP causes dimer dissociation. Here, using single-channel recording methods on intact CFTR molecules, we directly follow opening and closing of the channel gates, and relate these occurrences to ATP-mediated events in the NBDs. We find that energetic coupling between two CFTR residues, expected to lie on opposite sides of its predicted NBD1-NBD2 dimer interface, changes in concert with channel gating status. The two monitored side chains are independent of each other in closed channels but become coupled as the channels open. The results directly link ATP-driven tight dimerization of CFTR's cytoplasmic nucleotide-binding domains to opening of the ion channel in the transmembrane domains. This establishes a molecular mechanism, involving dynamic restructuring of the NBD dimer interface, that is probably common to all members of the ABC protein superfamily.  相似文献   

17.
Chloride impermeability of epithelial cells can account for many of the experimental and clinical manifestations of cystic fibrosis (CF). Activation of apical-membrane Cl- channels by cyclic AMP-mediated stimuli is defective in CF airway epithelial cells, despite normal agonist-induced increases in cellular cAMP levels. This defect in Cl- channel regulation has been localized to the apical membrane by exposing the cytoplasmic surface of excised membrane patches to the catalytic subunit (C subunit) of cAMP-dependent protein kinase and ATP. In membranes from normal cells, C-subunit activated Cl- channels with properties identical to those stimulated by cAMP-dependent agonists during cell-attached recording. Activation by the C subunit was not observed in CF membranes, but the presence of Cl- channels was verified by voltage-induced activation. The failure of the C subunit to activate the Cl- channels of CF membranes indicates that the block in their cAMP-mediated activation lies distal to induction of cAMP-dependent protein kinase activity and focuses our attention on the Cl- channel and its membrane-associated regulatory proteins as the probable site of the CF defect.  相似文献   

18.
龙思宇  严少敏  吴光 《广西科学》2014,21(6):671-676
【目的】编码囊性纤维化跨膜电导调节子(Cystic fibrosis transmembrane conductance regulator,CFTR)蛋白的基因突变可引起囊性纤维化,但该蛋白错义点突变的变异模式尚无报道。【方法】先用氨基酸对可预测性为指标将人CFTR蛋白及其178个错义点突变的氨基酸序列转换成标量序列,然后分析变异前后被替换掉的和替换出的氨基酸对的变化。【结果】97.19%的变异发生在不可预测的氨基酸对;87.08%的变异涉及1个或2个被替换掉的氨基酸对,其实际频率大干预测频率;15.17%的变异带来1个或2个替换出的氨基酸对,它们在正常的CFTR蛋白是不存在的;共有122个变异导致替换出的氨基酸对的实际频率小干预测频率。【结论】不可预测的氨基酸对对变异更敏感,变异的趋势是缩小氨基酸对实际频率和预测频率之间的差距,使氨基酸对的构成更加随机化,而人CFTR蛋白的这种退行性变导致了囊性纤维化。  相似文献   

19.
Basu U  Chaudhuri J  Alpert C  Dutt S  Ranganath S  Li G  Schrum JP  Manis JP  Alt FW 《Nature》2005,438(7067):508-511
Antibodies, which are produced by B-lineage cells, consist of immunoglobulin heavy (IgH) and light (IgL) chains that have amino-terminal variable regions and carboxy-terminal constant regions. In response to antigens, B cells undergo two types of genomic alterations to increase antibody diversity. Affinity for antigen can be increased by introduction of point mutations into IgH and IgL variable regions by somatic hypermutation. In addition, antibody effector functions can be altered by changing the expressed IgH constant region exons through IgH class switch recombination (CSR). Somatic hypermutation and CSR both require the B-cell-specific activation-induced cytidine deaminase protein (AID), which initiates these reactions through its single-stranded (ss)DNA-specific cytidine deaminase activity. In biochemical assays, replication protein A (RPA), a ssDNA-binding protein, associates with phosphorylated AID from activated B cells and enhances AID activity on transcribed double-stranded (ds)DNA containing somatic hypermutation or CSR target sequences. This AID-RPA association, which requires phosphorylation, may provide a mechanism for allowing AID to access dsDNA targets in activated B cells. Here we show that AID from B cells is phosphorylated on a consensus protein kinase A (PKA) site and that PKA is the physiological AID kinase. Thus, AID from non-lymphoid cells can be functionally phosphorylated by recombinant PKA to allow interaction with RPA and promote deamination of transcribed dsDNA substrates. Moreover, mutation of the major PKA phosphorylation site of AID preserves ssDNA deamination activity, but markedly reduces RPA-dependent dsDNA deamination activity and severely impairs the ability of AID to effect CSR in vivo. We conclude that PKA has a critical role in post-translational regulation of AID activity in B cells.  相似文献   

20.
Although cystic fibrosis (CF) is among the most common inherited diseases in Caucasian populations, the basic biochemical defect is not yet known. CF is inherited as an autosomal recessive trait apparently due to mutations in a single gene, whence the efforts made to identify the genetic locus responsible by linkage studies. Two markers have recently been identified that are genetically linked to CF: one is a genetic variation in serum level of activity of the enzyme paraoxonase, and the other is a restriction fragment length polymorphism (RFLP) identified with a randomly isolated DNA probe. We report here that the genetic locus DOCRI-917 defined by the cloned DNA probe is located on chromosome 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号