首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
使用动态反应釜制备得到磁性粒子,与静态反应釜相比单次制备量提高20倍;通过扫描电子显微镜(SEM)、傅立叶红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对产物进行表征,证明获得了粒径200 nm左右的单分散Fe3O4粒子,并具有超顺磁性;对其表面进行SiO2包覆,获得具有良好分散性的Fe3O4@SiO2粒子。研究发现Fe3O4@SiO2对DNA提取具有可重复利用性,并且质粒DNA吸附到Fe3O4@SiO2上后可直接加入聚合酶链式反应(PCR)体系作为扩增模板。  相似文献   

2.
首先用水热法制备了Fe3O4纳米球,然后以制备的磁性Fe3O4纳米粒子为磁核,在高温高压反应釜中与葡萄糖反应,使其表面包覆一层聚糖,利用聚糖的还原性,让包覆后的粒子与AgNO3反应,制备出Fe3O4/Ag纳米复合粒子。用透射电镜(TEM)、X射线衍射仪(XRD)对所制备的材料的形貌和结构进行了表征。通过抑菌实验的测定,结果表明Fe3O4/Ag复合材料具有良好的抑菌活性。  相似文献   

3.
以价格低廉的Fe3O4纳米颗粒为填料,聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)为基材制备复合材料,并采用高氯酸(HClO4)对其进行后处理,获得PEDOT:PSS/Fe3O4柔性自支撑薄膜。利用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、X射线电子能谱(XPS)、拉曼光谱(Raman)对复合薄膜进行形貌和结构表征,并采用循环伏安(CV)和恒电流充放电(GCD)对其进行电化学性能分析。结果表明:经酸处理的PEDOT:PSS/Fe3O4复合薄膜表面粗糙,电化学性能得到较大提升,且倍率性能较好。在1 A/g时,放电比电容可达106 F/g,远远超出PEDOT:PSS原始膜和未处理的PEDOT:PSS/Fe3O4复合薄膜;在10 A/g时,放电比电容能够保持在81 F/g。  相似文献   

4.
采用水热法制备了Fe3O4纳米粉体、硅藻土负载纳米Fe3O4二元催化剂(Fe3O4@D),并与BiOBr粉体进行了复合,成功合成了BiOBr/Fe3O4@D复合纳米粉体。采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、傅里叶变换红外光谱仪(FTIR)等仪器对3种催化剂进行了表征,并用制得的催化剂光降解罗丹明B(RhB)。结果表明,3种催化剂均被成功合成;在3种催化剂中,Fe3O4粉体呈球状,且BiOBr/Fe3O4@D直径处于纳米级;在光催化降解RhB的试验中,BiOBr/Fe3O4@D复合纳米粉体的催化性能最好。进一步考察了BiOBr/Fe3O4@D三元催化剂的投加量、PMS质量浓度、初始pH等因素对其光催化性能的影响。结...  相似文献   

5.
针对传统芬顿技术的工作pH范围较窄、增大pH值会明显降低四环素的去除率并导致二次污染的问题,采用溶剂热合成方法,将Fe3O4负载于碳毡(CF)电极表面,合成Fe3O4@CF复合电极.通过扫描电子显微镜(SEM)、 X射线衍射(XRD)、 X射线光电子能谱(XPS)、 Fourier变换红外吸收光谱(FTIR)和电化学阻抗(EIS)对材料进行表征,研究其作为电极在非均相电辅助芬顿(EF)系统中对四环素的降解性能和机理,并进行循环实验.结果表明:Fe3O4@CF电极在非均相电辅助芬顿体系中对四环素的降解性能最好;在室温下,经过90 min,四环素初始质量浓度为20 mg/L,初始pH=3,两电极间距离为2 cm,外加电流为50 mA,在非均相电芬顿系统中Fe3O4@CF电极对四环素的去除率可达96.7%;Fe3O4@CF电极可重复利用性良好;在非均相电芬顿系统降解四环素的过...  相似文献   

6.
采用水热法制备了Fe3O4纳米粉体,并与Bi-BiOBr纳米材料进行了复合,成功的得到了Fe3O4/Bi-BiOBr复合纳米粉体。采用X射线衍射仪、场发射扫描电子显微镜、傅里叶红外光谱仪等仪器对样品进行了表征。结果表明,Fe3O4/Bi-BiOBr复合纳米材料被成功合成;在复合材料活化PMS去除罗丹明B (RhB)的降解试验中,考察了Fe和Bi的原子质量比(m(Fe):m(Bi))、催化剂质量浓度、PMS质量浓度等因素对光催化性能的影响。结果表明,光反应80 min后,降解率均达到95%以上;经过5次循环试验后,降解率仍能达到92.12%,具有良好的稳定性;催化过程中·OH为主要活性物种,其次为SO-4·和h+。  相似文献   

7.
Fe3O4磁性纳米粒子是目前应用最为广泛的磁性纳米材料,相比于其他材料而言,其制备过程简单、化学稳定性好、储存方便、成本低廉,且容易实现磁性分离。Fe3O4磁性纳米粒子表面容易被修饰大量的含氧官能团,使其易于和其他基团连接,因此具有极大的功能化潜力。经过功能化的Fe3O4磁性纳米粒子具有很高的饱和磁化率以及极好的超顺磁性,从而被广泛用作水体处理过程中吸附剂、催化剂等的基质材料。本文综述了近年来具有代表性的功能化Fe3O4磁性纳米材料,列举了一系列功能化Fe3O4磁性纳米材料的制备方法以及它们在去除水体中的有机物、重金属离子、染料、抗生素等污染物方面的应用,并对磁性纳米材料在实际应用中面临的问题进行了总结和分析。  相似文献   

8.
采用共沉淀法制备20~40nm的Fe3O4颗粒。在Fe3O4悬浮液中分别利用柠檬酸钠单独作为还原剂、四羟甲基氯化磷(THPC)和抗坏血酸共同作为还原剂还原HAuCl4,生成10~90nm的Au纳米颗粒,形成Au/Fe3O4复合颗粒。通过透射电子显微镜和紫外分光光度计对Au/Fe3O4进行表征,研究还原剂种类对Au/Fe3O4粒径、形貌和分散性的影响,结果表明:柠檬酸钠为还原剂时,生成Au纳米颗粒的反应主要在Fe3O4纳米颗粒表面进行,Au纳米颗粒的负载量随柠檬酸钠用量增加而减少,粒径在28.08~77.71nm之间;THPC和抗坏血酸共同作为还原剂时,先在Fe3O4 纳米颗粒表面生成THPC-Au,加入抗坏血酸后生成Au纳米颗粒,粒径在71.44~153.2nm之间。  相似文献   

9.
采用溶胶-凝胶表面包覆法制备了纳米Fe2O3-Al2 O3复合材料, 利用X射线衍射和透射电镜对样品的物相、 粒度和形貌进行了研 究. 结果表明, α-Fe2O3掺杂降低了Al2O3相变温度, 在900 ℃可以得到稳定的α-Al2O3相.  相似文献   

10.
基于铁磁/重金属异质结结构的纯自旋流电子器件具有低功耗、非易失性等优点,是当前自旋电子学研究的核心内容。该文利用超导量子干涉仪以及铁磁共振测量系统等手段,对分子束外延法生长的铁磁/重金属异质结Fe3O4/Au单晶薄膜的静态及动态磁性能进行了系统研究。研究表明,随薄膜厚度的增加,Fe3O4的单轴磁各向异性逐渐减小而磁晶各向异性逐渐增强。Au覆盖层的引入有助于单晶超薄膜的晶格弛豫,进而有效增强了Fe3O4的磁各向异性。该研究为铁磁/重金属异质结的构建提供了新的思路,有望推动其在纯自旋流电子器件中的实用化进程。  相似文献   

11.
以煤矸石为原料,制备出磁性煤矸石地质聚合物(Fe3O4-CGGP),研究了其类芬顿氧化降解苯酚的性能和机制。表征显示,粒径为10~20 nm的Fe3O4均匀分散在煤矸石地质聚合物(CGGP)表面形成Fe3O4-CGGP,Fe3O4-CGGP的饱和磁化强度达到35.68 emu/g,这表明Fe3O4-CGGP具有良好的催化活性和磁响应性能。将其应用于降解苯酚废水,实验探讨了pH值、催化剂投加量、H2O2投加量以及苯酚初始浓度等条件对苯酚降解过程的影响。实验表明:反应最适宜pH值为3.5,催化剂最佳投加量为0.5 g/L,H2O2最佳投加量为10 mmol/L,在最优条件下60 min对苯酚去除率可达到100%.自由基淬灭实验认为在Fe3O4-...  相似文献   

12.
采用商业磁铁矿铁精粉(Fe3O4),设计了提纯和制备工艺,成功制备出质量分数为99.5%以上、分散性良好的α-Fe2O3纳米粒子,对其提纯、制备工艺及机理进行了深入研究.结果表明:wNaOH对除硅效果影响显著,当wNaOH为39%时,可使原料矿粉中wSiO2由1.11%降至0.032%,得到较纯铁精粉;随烧结温度的升高,α-Fe2O3颗粒的结晶度、形貌特征及磁性能随之发生变化;当烧结温度为670℃时,α-Fe2O3颗粒综合性能最佳,颗粒结晶度较高、分散性较好,具有亚铁磁性;通过对氢氧化铁沉淀物加热搅拌时间的控制,可有效调控α-Fe2O3的晶粒尺寸;当搅拌时间为60 min时,获得分散性好、平均粒径仅为35.3 nm的α-Fe2O3纳米粒子.  相似文献   

13.
以乙二醇为溶剂,通过温和的溶剂热法制备了具有不同颗粒尺寸大小的Fe3O4微米粒子.研究发现,通过调节反应体系中水、聚乙二醇-20000和铁离子的浓度,能有效控制Fe3O4的成核与生长,从而能实现对Fe3O4在较大颗粒尺寸范围内的有效调控.另外,相比小尺寸的Fe3O4,较大颗粒尺寸的超顺磁性粒子表现出更优良的磁性回收性能.由此可见,Fe3O4颗粒尺寸的有效调控对拓展其在纳米材料磁性回收中的应用具有非常重要的意义  相似文献   

14.
2,4-二氯苯酚(2,4-DCP)广泛用于工农业和医药等生产过程中,其泄漏和排放对水体、土壤及人类环境造成严重危害.文中首先用共沉淀法和液相还原法制成Fe3O4负载纳米零价铁(nZVI)复合材料(Fe3O4@n ZVI),然后将其用作类Fenton技术的催化剂,用于水中2,4-DCP的去除.考察了Fe3O4负载量、溶液pH值、H2O2浓度、Fe3O4@nZVI投加量、污染物浓度、温度等因素对2,4-DCP去除率的影响,并进行了动力学拟合分析;另外,还研究了Fe3O4@n ZVI的可回收利用性能.结果表明,在Fe3O4与n ZVI摩尔比为1∶1时,降低反应体系p H值、提高H2O2浓度、增加Fe3O4  相似文献   

15.
采用溶剂热法在200℃制备出形貌均一、分散性较好、平均粒径约200nm的磁性Fe3O4微球。该方法合成的Fe3O4微球在Fenton降解二甲酚橙方面效果显著,降解率达到90%以上。由于Fe3O4微球具有强磁性,故反应后催化剂可直接通过磁铁吸引的方式回收,且回收率可达90%以上。回收后的催化剂只需简单超声清洗便可再生并循环利用,催化剂再生后的降解效果与其一次催化的效果相近。  相似文献   

16.
首先采用工艺较为简单的溶剂热法制备Fe3O4材料,对其进一步修饰后可得到Fe3O4/GO复合材料,最后通过化学共沉淀法制备得到具有磁性的纳米材料Fe3O4/GO/ZnO,并将该材料用于盐酸土霉素的吸附研究中。考察了盐酸土霉素的起始浓度、pH以及吸附剂的用量等因素对盐酸土霉素吸附效果的影响,还考察了纳米材料的再生循环次数及最大吸附量。结果表明:盐酸土霉素起始浓度为18 mg/L,pH值为3,材料用量为0.003 2 g等最佳条件下,该材料的最大吸附量达到191.93 mg/g,前再生3次吸附量保持在150 mg/g左右,故制备的Fe3O4/GO/ZnO磁性纳米材料对盐酸土霉素具有较好的吸附能力和稳定性。  相似文献   

17.
通过反相微乳液法制备四氧化三铁纳米颗粒(Fe3O4 NPs),并用硅烷偶联剂KH570对其改性,以期在Fe3O4 NPs表面引入C==C双键,再利用引入的C==C双键与三硫代十二烷酸-2-氰基异丙酯(RAFT试剂)进行反应,得到RAFT试剂化的Fe3O4 NPs(Fe3O4-g-KH570-RAFT NPs),并对不同阶段的Fe3O4 NPs产物的结构与形貌等进行表征.研究中以RAFT试剂接枝率(GrRAFT)为指标,考察了反应时间等工艺条件对GrRAFT的影响.结果表明:制备的Fe3O4-g-KH570-RAFT NPs的平均粒径为10.4 nm,当反应时间为14 h,反应温度为65 ℃,nKH570/nRAFT为1/2时,接枝率GrRAFT最高达到79.34%.  相似文献   

18.
为了获得高度取向的阵列材料,以水热合成的纳米Fe3O4磁性颗粒为功能物质,氟碳树脂为薄膜基体,在磁场作用下定向生长成具有磁性针状阵列结构的自组装抗反射薄膜,并考察不同Fe3O4含量对磁性阵列结构的影响;利用体视显微镜和扫描电镜(SEM)对薄膜表面结构进行了表征;采用紫外可见近红外分光光度计(UV/Vis/NIR)来表征自组装薄膜的反射率。结果表明:随着Fe3O4含量的增加,阵列高度逐渐增高;当粉体质量分数为10%时,阵列的间距为300~600μm,阵列中单个针状结构中间的直径约为100μm;薄膜表面的阵列结构对于反射率的降低有明显效果  相似文献   

19.
采用溶剂热法合成超顺磁性空心亚微球,然后通过正硅酸乙酯水解-聚合反应,在亚微球表面包覆SiO2,形成核壳结构Fe3O4@SiO2空心亚微球。以该Fe3O4@SiO2亚微球为分离介质,实现了大肠杆菌(E. coli)质粒DNA的高效、快速分离。  相似文献   

20.
利用纳米级Fe3O4作为成形润滑油的添加剂,采用表面活性剂对纳米粒子进行表面改性,利用超声分散器使Fe3O4纳米粒子均匀稳定地分散在润滑油溶液中。利用四球摩擦磨损试验机对配制出的纳米润滑液进行摩擦性能测试。研究结果表明,不同粒径的纳米粒子对润滑剂的油膜强度影响较大,采用20 nm Fe3O4粒子配制润滑剂时,可有效提高润滑剂的油膜强度;当纳米粒子质量分数达到8%时,摩擦系数有较大程度的降低,磨斑直径减小。这表明一定质量分数与尺寸的Fe3O4纳米粒子可有效提高润滑油的摩擦性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号