首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
四足机器人斜坡对角小跑运动控制研究   总被引:1,自引:0,他引:1  
能否在斜坡上稳定行走是判断四足机器人运动性能的一个重要标准.针对四足机器人采用对角小跑步态在斜坡地形上的运动,建立机器人结构简化模型并进行运动学分析,完成了该步态下的足端轨迹规划,并提出一种基于模糊控制的姿态调整方法,通过调节机器人支撑相关节角来减小机身运动过程中的横滚角波动,从而提升机器人斜坡行走的稳定性.Adams...  相似文献   

2.
四足机器人对角小跑直线步行的虚拟模型   总被引:4,自引:0,他引:4  
提出用虚拟模型控制技术实现四足步行机器人的对角小跑直线步行,在阐述虚拟模型概念的基础上,推导了JTUWM-Ⅲ四足机器人对角支撑和四足支撑的虚拟模型,实现了对小角小跑步态,机体步行速度为0.2km/h。  相似文献   

3.
四足机器人对角小跑起步姿态对稳定性的影响   总被引:1,自引:0,他引:1  
四足机器人在高速动态步行过程中保持稳定性是十分重要的.建立了四足机器人对角小跑步态下绕支撑对角线的翻转力矩力学模型,分析了该力矩对机器人运动姿态及稳定步行的不利影响,得出了翻转角度与步行周期的平方及步长成正比的结论,并提出了利用起步姿态来削弱翻转力矩不利影响的方法--三分法.仿真实验证明了该方法的有效性.  相似文献   

4.
针对四足机器人在常规对角小跑步态中绕对角支撑线的翻转力矩会导致机器人失衡问题,在运动学建模和失衡原因分析的基础上提出了2种新颖的对角小跑步态规划方法:叠加腿部侧摆运动的对角小跑步态和叠加脊柱偏航摆动的对角小跑步态.前者引入腿的侧摆关节的运动调节支撑腿足端轨迹,后者增加脊柱偏航关节的运动调节机器人的重心并保持足端轨迹不变,这2种方法均使机器人重心在整个对角小跑步态周期位于对角支撑线上.仿真结果显示,相比于常规对角小跑步态和足端轨迹后移的对角小跑步态,提出的对角小跑步态规划方法显著提高了机器人运动的稳定性.此外,提出的规划方法在存在模型误差时具有鲁棒性.  相似文献   

5.
6.
基于动力学模型的四足机器人运动控制,难以实现适应非结构化环境的稳定步行.开展了基于中枢模式发生器控制策略的四足机器人对角小跑步态仿真分析与实验研究.采用正弦函数规划了四足机器人的足端期望轨迹,采用D-H坐标法进行四足机器人腿摆动相和支撑相的运动学分析,由运动学逆解获得四足机器人足端期望轨迹和关节角位移间的关系.设计了中枢模式发生器的神经振荡器控制器,建立由兴奋神经元和抑制神经元组成的振荡单元模型,输出振荡波控制四足机器人髋关节和膝关节.通过开展四足机器人对角小跑步态步行仿真和实验研究,验证了理论分析和控制方法的正确性,为提高四足机器人机动性奠定基础.  相似文献   

7.
四足机器人对角小跑步态的研究   总被引:17,自引:3,他引:17  
介绍了JTUWM-Ⅲ型多关节四足步行机器人,设计了Trotting步态,并完成了Trotting动态步行实验,步行速度为0.2km/h,占空系数β=0.5。  相似文献   

8.
四足机器人的仿生脊柱对提高机器人非结构化环境的机动性和稳定性具有重要作用。系统分析了国内外四足机器人仿生脊柱的研究现状,将仿生脊柱分为局部柔顺脊柱和整体柔顺脊柱两类,对比分析不同四足机器人仿生脊柱的结构特点,提出未来发展趋势。四足机器人仿生脊柱从传统的整体刚性结构向刚柔耦合结构方向发展,具有类生物变刚度、可柔顺弯曲特性的新型仿生脊柱突破仿生驱动、神经元精细控制等关键技术,向高效能量转换的类生物系统方向发展。  相似文献   

9.
仿生四足机器人对角步态规划及稳定性分析   总被引:1,自引:0,他引:1  
本文以仿生四足机器人作为研究对象,为改善对角步态的稳定性,提出了通过改变对角步态中支撑足的初始位置来提高机器人运动稳定性的方法。通过支撑足位置参数n来改变其初始支撑位置,仿真表明:n从0开始递增直至0.3,稳定性逐渐提高;在 n=0.3附近翻转角达到最小,机身偏转最小,稳定性最好;n>0.3之后稳定性又逐渐减弱;此外在步态规划中研究发现以复合摆线作为足端轨迹相比于椭圆曲线更有利于机器人行走的稳定性。仿真与实验证明了该方法的准确性以及可行性。因此,通过调整支撑足的初始位置以及选择复合摆线作为足端轨迹能使机器人的稳定性有较大提高,为仿生四足机器人的对角快速稳定行走奠定基础。  相似文献   

10.
在未知地形行走时,由于地形突变,采用常见步态算法的四足机器人容易受到冲击,导致失稳,为此,提出一种改进的四足机器人足端轨迹规划的算法。将足端运动轨迹分段优化,减小机器人在水平地面、上坡和下坡地形的足端力矩变化,增加四足机器人运动的稳定性。实验选用斯坦福四足机器人,记录俯仰角pitch、横滚角roll及足端力矩在机器人通过不同地形时的变化。实验结果表明,足端轨迹优化后的机器人在未知地形中行走的稳定性得到有效提升。  相似文献   

11.
提升四足机器人行走稳定性的对角步态规划方法   总被引:2,自引:0,他引:2  
针对四足机器人在采用对角步态行走中容易失稳的问题,提出了通过改变对角步态中支撑足的初始位姿来改善并提升运动稳定性的方法.结合零力矩原理,找到四足机器人支撑足最佳初始膝关节转角θ1和髋部前向关节转角θ2,从而确定四足机器人支撑足的最佳初始位姿.仿真表明:四足机器人运动采用不同初始位姿时,运动过程中的稳定性不同.当取最佳初始位姿时,四足机器人的机身偏转量最小,稳定性最好.由此证明,通过调整支撑足的初始状态可以有效提高四足机器人在采用对角步态行走过程中的稳定性.   相似文献   

12.
为提高四足机器人面对广域地形环境的机动性和适应性,设计一种可变刚度的连续型仿生脊柱。采用金属构件作为脊柱的连接件和支撑件,模拟猎豹的脊柱骨架;使用钢丝绳传动作为主动力驱动,模拟生物肌肉纤维的发力;在脊柱板之间设置不同刚度的弹簧模拟肌腱的储能与释能功能。通过建立静力学模型研究负载及绳驱动拉力对脊柱的影响。研究结果表明:采用的连续型构型为四足机器人躯干在上下弯曲方向提供了灵活性,并使负载施加的力沿脊柱方向分散,减小脊柱的损耗;脊柱可以实现躯干部分整体弯曲与回复,最大弯曲角度达到25°。变力恒载实验中,0 kg和30 kg负载下,仿真结果和实验结果的模型末端位置相对误差分别为2.71%和4.00%;恒力变载实验中,750 N和1 400 N拉力下,仿真结果和实验结果的模型末端位置相对误差分别为4.25%和2.79%。脊柱的响应频率可以达到1.62 Hz,变刚度试验测得的等效弯曲刚度范围为4.70~51.36 N/mm,最大负载为334.9 N,可以满足四足仿生机器人在广域地形的应用需求。  相似文献   

13.
应用矩阵理论方法,研究了具有特定腿机构——空间缩放机构的四足步行机运动学中的位置问题,从而得出了表示步行机运动状态的位置姿态、各腿关节位移量和足的位置这三组变量之间的关系,以及已知任意两组求第三组变量的公式。还提出了一种步行机实现简单行走运动的控制方法,并用MCS-51系到单片机控制系统,完成了四足步行机“WL-Ⅰ”的平地直线行走实验。  相似文献   

14.
四足机器人系统复杂,运动自由度多,其动态稳定性一直是机器人控制领域的难点与热点。为使四足机器人能够在复杂多样的自然环境中运动自如,针对四足机器人特殊的对角双足支撑动态稳定性问题进行探究。将足式机器人简化为可移动变长倒立摆模型,对其进行运动学和动力学分析,设计了一种运动稳定控制算法,使四足机器人能在对角双足支撑的情况下保持稳定,在受到外力的干扰时可自动调整,并再次恢复到平衡稳定状态。以搭建的四足仿狗机器人为实验平台,开展了对角支撑的平衡实验,实验结果表明四足机器人能够在对角支撑下精确控制自身的稳定,验证了该控制算法的可行性,为后期四足机器人动态稳定性行走奠定重要基础。  相似文献   

15.
两轮四兄机器人,是日本研制的一种造型奇特的机器人。它以两个车轮和四足组合,使机器人可以在任何复杂的道路上行走而不受影响。由于此前推出的机器人,欢足行走在不平整的道路上缺乏稳定性。据此,他萌发了研制稳定性更好的机器人。中野教授认为,即使将来研究出更先进的欢足行走机器人,解决了在复杂地形上的行走问题,但由于要增加机器人复杂的运算,不如增加两个轮子更省事,既可保证机器人行走的稳定性、免去了机器人的复杂运算,也提高了行走的速度,可谓简单实用。两轮四足机器人  相似文献   

16.
为了提高四足机器人在包含坡面和障碍物等复杂地形中的运动能力与环境自适应能力,在对四足机器人基本步态研究的基础上,利用生物节律运动和反射控制机理,对四足机器人的适应性行走控制模型进行了研究.建立了适用于四足机器人坡面运动以及越障运动的前庭反射和屈肌反射数学模型,根据该数学模型构建的生物反射控制器与机器人膝、髋关节CPG控制网络有机融合,构成了协调性好、整体性高的控制系统.通过Adams/Matlab联合仿真,验证了所提出控制模型的可行性与有效性.该模型能够有效地使前膝后肘式四足机器人流畅、平稳地完成上下坡运动,并具备自适应越障运动能力.  相似文献   

17.
偏心轮腿六足机器人四足步态规划   总被引:1,自引:1,他引:1  
提出了一种适用于偏心轮腿六足机器人的直行四足步态规划.以一个运动周期为例,分析了偏心轮腿六足机器人直行过程中5个阶段的运动状态,以及每个运动状态中偏心轮腿步态的参数变化并用状态矩阵加以描述.将该步态用于所设计的偏心轮腿六足机器人,在驱动电机的控制下,能保证机器人的直行前进.  相似文献   

18.
移动能耗是液压4足机器人的一项重要性能指标,因此,对不同步态参数下液压4足机器人的移动能耗分析研究具有重要意义. 文中对液压4足机器人进行运动学和动力学建模,利用运动学和动力学模型,根据机构的几何关系得到液压缸运动状态. 规划了摆线函数和三次曲线函数在对角步态下的足端轨迹,对比分析了两种足端轨迹的能量消耗,着重研究了不同步幅、步高、入地角度、周期大小、约束角度以及斜坡角度对移动能耗的影响. 研究结果表明,综合考虑系统的稳定性、冲击力以及速度要求,应选择相对较大的步幅、较大的周期以及较小的入地角度,在满足跨越障碍的情况下,应选择低步高,对整个周期能耗进行考虑,应选择约束入地角度.   相似文献   

19.
设计了一种可实现翻滚的四足机器人,不仅可以采用步行方式通过崎岖地形,而且可以自主变形成为滚动体,从而采用翻滚模式通过平坦地形.机器人四肢由弓形杆件组成,机体采用球冠外形,根据旋转对称原则设计肢体的几何参数和质心分布.由站立模式向翻滚模式变形过程中,将机器人简化为平面连杆机构,建立了变形过程中机器人质心运动学模型.提出势能变化最小的变形策略,采用惩罚函数法,优化变形终止时刻机器人的位形.针对变形运动学方程的非线性特性,采用最小二乘法进行关节轨迹规划.结果表明机器人质心运动轨迹满足变形策略.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号