首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小麦细胞壁钙调素的研究初报   总被引:7,自引:2,他引:5  
叶正华 《科学通报》1988,33(8):624-624
在植物细胞内钙离子作为第二信使通过钙调素(Calmodulin,简称CaM)而起调节作用,已有许多研究证实和评述。植物体内大部分的Ca~(2+)是存在于细胞壁中,Ca~(2+)和细胞壁的相互作用发挥着重要的生理功能,如细胞壁结构的稳定性,酸性生长,离子交换特性,向地性,细胞壁酶活性的调节等。在植物细胞壁中Ca~(2+)的功能是否通过CaM起调节作用,目  相似文献   

2.
近年来,在研究防治植物因微生物引起的病害中,有两个重要发现证实了植物免疫的可能性。当植物被传染时,植物本身能产生一种抗生素物质—植物不传染组织中所缺少的植物防御素。在产物中间,微生物的生命活动显示出生物活动物质一植物防御素的诱导物。Л.В.梅特里茨基和他的助手(苏联科学院巴哈生物化学研究所,白俄罗斯共和国农业部白俄罗  相似文献   

3.
正山西河津的艾女士问:机体雌激素水平绝对或相对增高、孕激素水平降低造成的乳腺结构紊乱可诱发乳腺小叶增生,而大豆及豆制品中含有的植物化学物——大豆异黄酮等成分被誉为"植物雌激素",因此豆制品会加重乳腺增生,甚至诱发乳腺癌。这样的说法正确吗?@专家解答:黄豆中的大豆异黄酮是一种植物雌激素,很多人担心它会诱发乳腺癌。其实,植物  相似文献   

4.
徐茂军  董菊芳 《科学通报》2006,51(14):1675-1682
一氧化氮(NO)和活性氧(ROS)是植物体内两种常见的信号分子, 在植物抗逆反应等过程中起重要作用. NO合成和氧化迸发(oxidative burst)以及ROS积累是红豆杉悬浮细胞在桔青霉细胞壁诱导子处理下出现的两个早期反应. 为了探讨NO和ROS在桔青霉细胞壁诱导子促进红豆杉细胞紫杉醇合成过程中的作用及其相互关系, 分别以NO专一性淬灭剂cPITO, 一氧化氮合酶(NOS)抑制剂PBITU, 质膜NAD(P)H氧化酶抑制剂DPI以及超氧离子(O2-)和过氧化氢(H2O2)淬灭剂超氧化物歧化酶(SOD)及过氧化氢酶(CAT)处理红豆杉细胞. 结果表明, cPITO和DPI不仅可以分别抑制红豆杉细胞的NO合成和ROS积累, 同时还可以阻断诱导子对紫杉醇合成的促进作用, 说明NO和ROS是参与桔青霉细胞壁诱导子促进红豆杉细胞中紫杉醇合成调控的信号分子. cPITO和PBITU同时还可以部分抑制诱导子对红豆杉细胞氧化迸发的诱发作用. 外源NO单独处理可以促进红豆杉细胞中紫杉醇合成, DPI可以抑制NO对紫杉醇合成促进作用. 然而, 即使在红豆杉细胞中ROS积累被完全抑制的情况下, NO和桔青霉细胞壁诱导子对细胞中紫杉醇的合成仍然具有一定的促进作用. 上述结果表明, NO可以通过依赖和不依赖ROS的两类不同信号途径介导真菌诱导子诱发红豆杉细胞中紫杉醇的生物合成. 实验结果同时也表明, NO和桔青霉细胞壁诱导子对红豆杉细胞中紫杉醇合成的促进作用可以被CAT抑制, 但不受SOD的影响, 说明氧化迸发产生的H2O2可能是介导NO和桔青霉细胞壁诱导子诱发紫杉醇合成的信号分子.  相似文献   

5.
病毒     
《科学之友》2004,(6):58-59
你觉得自己很健康?觉得自己体内没有病菌?再仔细感觉感觉……就在此时此刻,入侵者正在你的身体周围张牙舞爪,跃跃欲试,逮到机会就会随时侵袭你身体内的细胞。它们会对细胞做些什么?它们会利用这些细胞来进行自我复制。这些小小的侵略者能入侵真菌、植物、动物,甚至细菌。任何生  相似文献   

6.
金银花、扁豆等许多植物的藤蔓会旋转生长,沿着依附物向上攀爬,这有利于在植物茂密的地区争夺 阳光。科学家最近通过对转基因植物的研究发现,基 因变异使决定植物细胞壁纤维生长方式的蛋白质发生 变化,可以使原本直线生长的植物变为旋转生长。  相似文献   

7.
生物导弹     
导弹是核武器中核弹的载体,在核武器中具有导航作用,能使核弹绝对地、准确地击中目标。 20世纪70年代中期,生物学家及免疫学家也研究成功生物导弹,叫单克隆抗体,它能在癌症病人体内导航抗癌药物,正确地选择和癌细胞结合,使药物发挥最大作用。人类及其他脊椎动物,在自然界长期进化过程中,获得了保存自己消灭疾病的本领,这就是防御免疫反应,当外来生物原致病因子侵袭时,人或脊椎动物体内就会发生一系列反应,目的在于消灭这些致病因子。致病因子含有蛋白质,在生物学及免疫学上叫抗原,而人或脊椎动物体内,也就产生了与之相对应的、拮抗的蛋白质叫抗体,两者相结合搏斗,这是基本的防御免疫反应。  相似文献   

8.
问答     
正香椿致癌是真的吗吉林白山的季女士问:网上疯传"吃香椿会致癌,因为里面含有亚硝酸盐和硝酸盐"的帖子,再次引发网友对亚硝酸盐和硝酸盐"是非功过"的一阵热议。吃香椿真的会致癌吗?@专家解答:植物生长的时候需要氮肥,植物吸收环境中的氮,通过复杂的生化反应最终合成氨基酸。在这个过程中,产生硝酸盐是不可避免的一步。在植物体内还有一些还原酶,会把一部分硝酸  相似文献   

9.
以荷兰瓦格尼根斯克大学W.斯密茨为首的树木学家、真菌学家和植物病理学家们研究了森林中当其它同种植物严重受到高酸度的雨水损害时,而某些树木却安然无恙的事例。他们发现,健康的树木根系一般都有过去尚未发现的真菌。在树木根系中产生一种菌根,即真菌菌丝体与高等植物根的共生群落,在供水中真菌促使根系生长,提供激素和维生素,同时使植物获得含糖物  相似文献   

10.
真菌王国     
庞大而独特的生命圈 真菌是一个独特的生命王国,一个庞大而活跃的生命圈.大多数人听到"真菌"这个词就会想到蘑菇,但正如植物的果实或花朵只是植物的一部分,植物还包括枝叶和根系一样,蘑菇只是某些真菌的子实体(产生孢子的器官).而且,以蘑菇的形式存在的真菌只是真菌众多生存方式中的一种,绝大多数真菌不需要蘑菇的形式就能释放孢子.  相似文献   

11.
正轮虫是污水中的常见微生物,其头部前端轮盘状纤毛的摆动能带动附近的水循环,水中的有机质和藻类随水流进入轮虫口中。借助电子显微镜,科学家最近发现一种接合菌纲真菌会与细菌合作捕猎并消化轮虫。首先,真菌会在水中形成菌丝网络;接着,菌丝网络上出现一个个棒棒糖状的突起,它们能粘住路过的轮虫;进而,细菌(图中的红色部分)会聚集在菌丝网络上,并汇聚到"棒棒糖"的头部;然后,真菌的菌丝开始穿透轮虫的身体,  相似文献   

12.
封面说明     
正植物细胞壁储藏了绝大部分光合作用产物,是地球上最丰富、但尚未完全开发利用的可再生生物质资源.植物细胞壁主要由纤维素、半纤维素、果胶质和木质素组成,是纤维及其制品、化工和生物能源的原料.认识植物细胞壁合成及其调控,通过生物技术培育可高效转化利用的细胞壁生物质,对充分利用植物细胞壁这一丰富的可再生资源,建立环境  相似文献   

13.
植物和我们人类一样也会患癌症,人称"植物癌症". 植物从胚胎发育、生长到开花结果,整个生命过程都是受细胞内的基因控制,进行着有条不紊的新陈代谢.当植物被病虫害侵袭受到损伤后,这种原先正常的、有条不紊的新陈代谢程序就会被打乱.  相似文献   

14.
细胞壁是植物细胞区别于动物细胞的重要结构特征之一,在植物细胞生长发育和环境响应中发挥重要作用.同时,地球上陆生植物光合作用产物约70%存于细胞壁中,细胞壁生物质是地球上最丰富的可再生资源.植物如何将光合产物合成为细胞壁成分?人类如何有效利用大量的、可再生的细胞壁生物质资源?这些问题近年来受到了广泛的关注.本文对细胞壁合成、利用生物技术对细胞壁生物质进行改造,以及细胞壁生物质利用等研究进行简要介绍和综述.  相似文献   

15.
人们已经知道在花瓶中放入一片阿斯匹林可使花儿保持更长一段时间,目前,科学家们已能解释这其中的奥秘.他们发现阿斯匹林中的活性物质水杨酸(邻羟苯甲酸)可以激活植物体内的防御系统,抵抗病菌侵入.这一发现为植物抗真菌、病毒及其它病菌提供了新的可能,同时它还表明水杨酸对植物的作用与荷尔蒙类似,它或许还能激活植物体内的其它过程.在过去20年间,科学家们已发现植物对人工合成的阿斯匹林颇为敏感,阿斯匹林可使植物打开叶片上的气孔;促进叶片生长,有时还能使其开花.  相似文献   

16.
细胞壁:决定植物细胞命运的信使   总被引:3,自引:0,他引:3  
以前认为植物细胞壁是些没有作用的空盒子,现在揭示出:它在植物发育过程中是决定细胞命运的有力信号机。自从17世纪英国科学家罗伯特·胡克(RobertHoorke)用早期的显微镜对植物进行了研究之后,就了解到植物细胞被僵硬的壁所包被。今天,任何一本生物学教科书的专业词汇,叙述细胞壁的经典的狭义作用时,都把它们描写成一种被动地包装着有活性的细胞生命物质的纤维素盒子。新的研究表明,细胞壁承担着决定植物细胞命运的活性作用。壁是一条长廊,包含有碳水化合物和蛋白质——但其本性仍然是个巨大的秘密——能和细胞内部及外部的其它…  相似文献   

17.
菌根际及菌丝酸性磷酸酶活性的简易测试   总被引:1,自引:0,他引:1  
以红三叶草为材料,利用五室多培养方法,研究了接种条件下对菌根植物根系及其根外菌丝进行酸性磷酸酶活体染色的可行性,结果表明,接种菌根真菌能明显提高根系的酸性磷酸酶活性磷酸酶活在测试试纸上呈现出较深的菌根印,反应时间以1h为宜,菌丝在测试试纸上也形成了明显的菌丝印,证明菌丝能酸性磷酸酶。  相似文献   

18.
植物体内的纳米结构SiO2   总被引:15,自引:0,他引:15  
作为地壳中含量极为丰富的元素,Si在植物体内,尤其是在单子叶植物体内的含量高于任何其他无机组合,由于它无处不在,因此很难用一般植物营养生理学方法证明它是植物的“必须营养元素”,但是,许多研究结果都证明Si对植物生长发育具有有益作用,它能明显提高植物对非生物和生物胁迫的抗性,从植物体矿化纳米结构SiO2的形态发生,结构和功能分析入手,重点讨论了以植物细胞壁为模板,诱导有机/无机二元协同胶体SiO2的自组装机制,以及它具有的特殊结构所赋予的植物抵属种环境胁迫的可能作用。  相似文献   

19.
《大自然探索》2014,(3):4-4
正在一个充满饥饿掠食者的世界,被掠食的动物必须时刻保持警惕以免被吃掉。植物同样面临自我防卫的挑战。但植物跑不掉也躲不掉,它们怎么保护自己呢?一些植物会使自己变得难吃,方法是提高自身的毒素或味道不好的化学物质(例如氰化物、硫化物或酸)的产量,或者构建物理防御(例如长出刺或者坚韧的叶子)。然而,防御是需要代价的:如果把能量投资在化学防御方  相似文献   

20.
作为地壳中含量极为丰富的元素,Si在植物体内,尤其是在单子叶植物体内的含量高于任何其他无机组分.由于它无处不在,因此很难用一般植物营养生理学方法证明它是植物的“必需营养元素”.但是,许多研究结果都证明Si对植物生长发育具有有益作用,它能明显提高植物对非生物和生物胁迫的抗性.从植物体矿化纳米结构SiO2的形态发生、结构和功能分析入手,重点讨论了以植物细胞壁为模板,诱导有机/无机二元协同胶体SiO2的自组装机制,以及它具有的特殊结构所赋予的植物抵抗各种环境胁迫的可能作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号