共查询到17条相似文献,搜索用时 62 毫秒
1.
基于鉴别性i-vector局部距离保持映射的说话人识别 总被引:1,自引:0,他引:1
为了进一步提高i-vector说话人识别系统的性能,该文提出了一种鉴别性i-vector局部距离保持映射(discriminant i-vector local distance preserving projection,DIVLDPP)的流形学习算法。该算法以i-vector间的Euclid距离作为度量准则,并以最小化同类点间距离同时最大化异类近邻点间距离的鉴别性准则作为优化目标函数,利用求解广义特征值的方法,得到最终的投影映射矩阵。在美国国家标准技术局2008年说话人识别核心数据集上的实验结果表明:该算法可以明显提高目前i-vector说话人识别系统的性能。 相似文献
2.
为了克服传统VQ与GMM说话人识别的缺点,提出了一种新的FVQMM说话人识别方法。该方法综合了VQ、GMM和模糊集理论的优点。通过用模糊VQ误差尺度取代传统GMM的输出概率函数,减少了建模时对训练数据量的要求,提高了识别速度。实验结果表明该方法是有效的。 相似文献
3.
在噪声环境下,稀疏表示方法并没有表现出它出色的区分性能,反而由于特征的分散导致性能的大幅下降。根据语音特征参数之间的相关性,提出了一种适用于稀疏表示说话人识别的全局补偿方法。该方法对不同阶特征参数进行逐一分析,目的是为了找出被噪声影响最严重的一阶参数并去除之,以此增强测试语音与训练语音之间的相关性。理论分析和实验结果表明,该方法具有很好的抗噪性能,在信噪比为5d B时,带有白噪声的语句识别率达到了85.7%,而在高信噪比时,其识别率能够达到97.5%,几乎等同于干净语音的识别率。 相似文献
4.
说话人识别技术作为一种身份识别的手段,具有独特的优势,是语音信号处理中的重要组成部分,近年来也逐渐成为国际上研究的热点.本文综述了说话人识别技术的发展及其相关技术,对现有的各种方法的优点和不足进行了分析,并对其中存在的问题和未来的研究方向进行了探讨. 相似文献
5.
为提高说话人识别系统的识别率,提出了一种提取Mel频率倒谱系数(MFCC)与差分特征组合参数的方法:先对传统的MFCC参数进行特征分量归一化处理,提升MFCC系数的噪声鲁棒性;再用高斯混合模型(GMM)构建了说话人识别系统。使用TIMIT语音库进行实验测试,并比较了不同高斯混合数的MFCC特征参数组合对识别率的影响。结果表明:使用改进的MFCC混合参数明显地提高了说话人的识别率。 相似文献
6.
江太辉 《五邑大学学报(自然科学版)》2003,17(1):23-26
将神经网络预测模型(NPM)应用于说话人识别中,经过实验,获得了较满意的结果。这说明神经网络对于说话人识别是一种很有潜力的方法。 相似文献
7.
基于矢量量化的组合参数法说话人识别 总被引:5,自引:0,他引:5
说话人识别的方法很多,提出的基于矢量量化(VQ)的算法,在语音特征表征上利用几种特征参数的组合使用来提高识别率,在VQ过程中,经典的K均值算法收敛速度快,但极易收敛于局部最佳点,为了使聚类算法收敛于全局最优点,同时提高识别率,采用模拟退火算法来改善聚类码本质量.讨论了具体的算法实现,并给出了一些实验数据,实验结果表明该处理方法是有效的. 相似文献
8.
9.
针对传统的特征参数Mel频域倒谱系数MFCC难以满足语音信号的非平稳性问题,提出一种基于小波分析的新特征参数FPBW的提取方法.为了提高训练速度,采用正交高斯混和模型,将正交变换改到最大期望EM算法之前进行,从而减少训练时间.实验结果表明,新的特征参数FPBW优于特征参数MFCC,并且采用正交高斯混合模型进一步提高了识别性能和训练速度. 相似文献
10.
11.
针对采用梅尔频率倒谱系数(mel-frequency cepstrum coefficient,MFCC)作为身份认证向量(identity vector,i-vector)进行说话人识别存在语音信息不全的问题,提出一种基于语谱特征的身份认证向量识别说话人的方法。语音信号经过预加重、分帧加窗预处理之后,通过短时傅立叶变换转换成语谱图,语谱图被提交到高斯通用背景模型,在高维均值超向量空间中选择合适的低维线性子空间流型结构以构造符合正态分布的向量作为身份认证向量。这些获取的身份认证向量经过线性判别性分析实现降维并存储。最后采用对数似然比(log-likelihood ratio,LLR)方法对训练和测试阶段的i-vector进行评分,完成说话人识别。以TIMIT数据库为标准的数值实验结果表明,相比采用MFCC作为特征的识别方法,研究的等错误率(equal error rate,EER)更低。 相似文献
12.
基于高斯混合模型的说话人识别系统 总被引:2,自引:0,他引:2
针对概率得分均值法出现的单个帧概率打分容易畸低的情况以及投票法因归一化而损失掉正面影响帧的打分,提出了一种引入可信度的均值方法,实验证明:该方法兼顾二者的优势的同时,在一定程度上消除了各自产生的不利影响,提高了说话人识别的精度。 相似文献
13.
在说话人识别系统中,提高反映说话人个性的语音信号特征参数的有效性和实时性是问题之一.本文在使用线性预测系数倒谱(LPCC)和美尔倒谱系数(MFCC)计算特征参数的基础上利用Fisher准则,构造了一种新的混合特征参数.这种新的参数在不增加系统计算量的同时,结合了LPCC和MFCC各自的优点,具有更好地表征说话人特征的能力,并在一定程度上消除特征的信息冗余,有利于信息的实时处理. 相似文献
14.
针对单一声学特征无法精准高效地辨识说话人身份的问题,提出了一种基于多特征I-Vector的说话人识别算法.该算法首先采集不同的声学特征并将其构成一个高维特征向量,然后通过主成分分析法有效地剔除高维特征向量的关联,确保各种特征之间正交化,最后采用概率线性判别分析进行建模和打分,并在一定程度上降低空间维度.在TIMIT语料库上利用Kaldi进行实验,算法运行结果表明,该算法较当前流行的基于I-Vector的单一梅尔频率倒谱系数和感知线性预测系数的特征系统在等错误率上分别提高了8.18%和1.71%,在模型训练时间上分别减少了60.4%和47.5%,具有更好的识别效果和效率. 相似文献
15.
16.
针对目前说话人识别系统中噪声使得识别率严重下降的问题,在特征提取前用小波阈值去噪方法对带噪语音进行去噪处理.对于小波阈值函数以及阈值的选取进行研究,提出一种改进的阈值函数,小波阈值中的噪音方差估计采用基于实际噪音方差估计的谱熵法,将改进的小波阈值去噪结合一种二级判断模型提高噪声环境下的说话人识别率.在不同信噪比条件下进行试验,改进的小波阈值去噪法优于传统小波阈值去噪方法,改进后的阈值函数与二级判断模型相结合的识别率比原始语音DTW模型提高了7.9%,比原始语音GMM提高了4.6%,对于短时语音有较好的识别率. 相似文献
17.
提出一种混合模型,即将隐马尔可夫模型(HMM)和小波神经网络(WNN)相结合应用于说话人识别的模型.该方法利用HMM的时序建模能力以及小波神经网络较强的模式分类能力,进行与文本无关的说话人的识别.实验表明,采用这种混合模型可以提高系统的识别率,特别在噪声环境中具有一定的噪声鲁棒性,提高了识别性能. 相似文献