首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
引入了Gorenstein弱平坦模,给出了Gorenstein弱平坦模的一些性质。证明了Gorenstein弱平坦模类关于直积封闭,Gorenstein弱平坦模类是投射可解类当且仅当它关于扩张封闭,并且证明了每一个模都具有Gorenstein弱平坦预覆盖。  相似文献   

2.
研究了强Gorenstein平坦模,获得了强Gorenstein平坦模的新特征,给出了一个强Gorenstein平坦模的一些充分必要条件,得到了强Gorenstein平坦模的新刻画.  相似文献   

3.
4.
介绍了平坦(S,R°)-双模, 通过平坦双模得到了模的Gorenstein性在平坦环变换下的升性。  相似文献   

5.
研究了右GWF-封闭环上Gorenstein弱平坦模和Gorenstein弱平坦维数的一些性质,并给出了模的Gorenstein弱平坦维数的等价刻画.  相似文献   

6.
研究强Gorenstein FP-gr-内射模的相关性质.证明了每个Gorenstein FP-gr-内射模是某个强Gorenstein FP-gr-内射模的直和项;在gr-凝聚环R上,分次左R-模M是强Gorenstein gr-平坦的,则M+是强Gorenstein FP-gr-内射的;在gr-n-FC环R上,分次...  相似文献   

7.
利用交换环上的w-模理论对弱平坦模和弱内射模进行w-模化研究.引入了交换环上的w-弱平坦模与w-弱内射模的概念,并讨论了它们的一些基本性质;研究了仅由超有限表现模定义的环的w-超有限表现维数.  相似文献   

8.
研究Frobenius双模和Gorenstein AC-平坦模之间的关系.设R和S均是环,SMR是Frobenius双模,MR是生成子.证明了:若X是Gorenstein AC-平坦R-模,则M(×)RX是Gorenstein AC-平坦S-模;若任意绝对clean ROP-模B是HomROP(M,B)(×)SM的直和...  相似文献   

9.
研究Gorenstein平坦模的推广形式(即(n,m)-强Gorenstein平坦模)以及平坦模的轭,讨论若模M的第n个轭是(n,m)-SG平坦模,则模M是否为(n,m+d)-SG平坦模的问题.  相似文献   

10.
设R是n-FC环,证明了R上的每个Gorenstein投射左R-模均是Gorenstein平坦的;进而讨论了n-FC环上的Gorenstein投射模、Gorenstein平坦模和强Gorenstein平坦模之间的关系.  相似文献   

11.
引入了强泛Gorenstein投射、内射和平坦模的概念.研究了这些模类的同调性质.  相似文献   

12.
Gorenstein平坦复形   总被引:1,自引:0,他引:1  
本文我们用通常的方法定义了平坦复形,证明了平坦复形和平坦模的复形的等价性.另外.文[1]定义并研究了Gorenstein内射复形和Gorenstein投射复形,本文将定义Gorenstein平坦复形,且给出一些与Gorenstein干坦模相类似的结果.  相似文献   

13.
定义并研究强n-Gorenstein环R及R上有限生成的上约化的Gorenstein平坦模的性质,得到:商范畴Mod-R中每个有限生成模都有有限生成的上约化的Gorenstein平坦盖。  相似文献   

14.
研究了弱Gorenstein FP-内射模,证明了凝聚环上弱Gorenstein FP-内射模是强Gorenstein FP-内射模的直和项,利用弱Gorenstein FP-内射模对FP-自内射环进行了刻画,讨论了凝聚环上FP-内射模类、Gorenstein FP-内射模类和弱Gorenstein FP-内射模类三者之间的联系.  相似文献   

15.
16.
该文主要研究了Frobenius扩张上的投射余可解Gorenstein平坦模与可分Frobenius扩张上的投射余可解Gorenstein平坦维数.设环扩张R?A是Frobenius扩张,M是任意左A-模.首先证明了若AM是投射余可解Gorenstein平坦模,则RM也是投射余可解Gorenstein平坦模.其次,证明了若环扩张R?A是可分Frobenius扩张,则PGfdA(M)=PGfdR(M).  相似文献   

17.
引入Gorenstein IFP-平坦模,讨论了这类模的同调性质及其稳定性,研究了在右coherent环上Gorenstein IFP-平坦模的等价刻画。  相似文献   

18.
19.
引入了强极小内射模和强极小平坦模的概念,并且给出了它们一些等价命题及其性质,强极小内射模关于直积、直和项、模扩张封闭,强极小平坦模关于直积、直和项、模扩张、正向极限封闭。  相似文献   

20.
设T=(AU0B)是形式下三角矩阵环.引入相对于平坦分解的相容双模,证明了:若U是相对于平坦分解的相容(B,A)-双模,M1是左A-模,M2是左B-模,则M=(M1M2)φM是Gorenstein平坦左T-模当且仅当M1是Gorenstein平坦左A-模,其中φM是单同态,Coker(φM)是Gorenstein平坦左...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号