共查询到19条相似文献,搜索用时 67 毫秒
1.
2.
针对传统分数阶粒子群优化(FOPSO)在算法综合性能上依赖于分数阶次α,易陷入早熟收敛,为此提出一种基于群活性反馈的S型自适应分数阶粒子群方法(SFOPSO),即根据种群活性以及粒子个体的活跃程度自适应动态调整每个粒子的分数阶次α,使种群在搜索过程中保持较好的稳定性与多样性;同时设计了一种混合变异机制以提升种群在探索期和开发期跳出局部最优的能力.理论分析证明了提出的算法SFOPSO的收敛性,实验选取6个不同特征的基准优化函数进行测试,结果证明了所提出SFOPSO算法的可行性和有效性,5种方法性能比较分析表明,SFOPSO具有更好的收敛精度和收敛速度. 相似文献
3.
为克服标准粒子群算法搜索后期收敛速度慢、容易陷入局部最优的缺点,通过引进自适应惯性权重因子平衡标准粒子群优化算法的全局搜索和局部改良能力,同时设计了均匀分布变异和高斯分布变异相结合的粒子群混合纵向多变异策略,来提高算法摆脱局部极值和局部寻优的能力.根据提出的改进算法流程,针对公认的Sphere,Rastrigin,Griewank和Salomon四种标准测试函数进行了收敛精度和收敛速度的测试.测试结果表明,在标准粒子群、自适应权重粒子群、自适应变异粒子群和自适应混合多变异粒子群4种算法中,提出的新算法具有最好的全局最优值搜索能力和最稳定的全局收敛特性,且在提高收敛速度的同时,有效地避免了早熟收敛问题. 相似文献
4.
简化的自适应粒子群优化算法 总被引:2,自引:0,他引:2
对基本粒子群优化算法作了一些改进:通过去掉速度因子简化算法结构,引入指数下降形式的惯性权重,对全局极值进行自适应的变异操作,进而提出一种简化的带变异算子的自适应粒子群优化算法。通过与其他改进的粒子群算法的数值实验对比分析,表明提出的新算法能够有效地避免早熟收敛问题,并能较大幅度地提高收敛速度和收敛精度。 相似文献
5.
针对标准粒子群算法(PSO)早熟收敛、进化后期收敛慢和精度较差等缺点,提出一种改进的自适应粒子群优化算法。该算法根据粒子的适应度值一致等价于粒子位置的特点,通过比较粒子适应度值与当前全局最优适应度值的差来自适应调整惯性权值,并按当前种群平均粒距对种群中部分粒子进行变异操作,增加种群多样性,使粒子跳出局部极值。通过几种典型函数的仿真实验表明,该算法在收敛速度和收敛精度上都比标准粒子群优化算法有明显的提高。 相似文献
6.
分数阶粒子群算法(FOPSO)是一种具有路径记忆的改进型粒子群优化算法。在多峰约束优化问题中,针对FOPSO易于早熟和依赖于初始参数的问题,文中提出了一种邻域自适应的约束分数阶粒子群优化方法(NAFPSO)。在算法中,依据进化状态来动态调整邻域拓扑从而更新粒子位置和速度,以提高可行解的全局寻优能力和收敛速度;采用带惩罚因子的罚函数约束处理技术,迫使粒子趋向可行区域;设计了微分变异策略以增加种群多样性,增强粒子逃脱局部最优的能力。用9个约束优化基准函数实验验证了NAFPSO的有效性和收敛性能,并应用于2个约束工程设计问题,结果表明,提出的算法寻优能力强、收敛快、精度高、稳定性好,可用于有效地解决复杂的约束工程设计优化问题。 相似文献
7.
针对算法易早熟和收敛慢的缺点,提出了一种新的自适应变异离散粒子群算法。算法中的变异思想是一种确定性交异操作,能使算法中陷入局部极小区域的粒子通过变异行为进行全局寻优,从而克服算法易早熟的缺陷。 相似文献
8.
基于自适应混沌变异粒子群算法的地震参数反演 总被引:2,自引:0,他引:2
提出了一种改进的基于自适应混沌变异的粒子群优化算法来解决地震参数反演问题.该算法提出自适应飞行策略,根据搜索能力对粒子群进行划分,增强了子群间的协同能力,使算法具有良好的全局寻优能力;两阶段混沌变异策略能够在粒子进化的不同阶段进行自适应性搜索,使算法具有较高的搜索精度.实验结果表明,该算法可有效避免标准PSO算法的早熟收敛,具有寻优能力强、搜索精度高、稳定性好等优点.首次将该算法应用于地震参数反演问题,结果表明该算法提高了反演精度且不受初始模型影响,能够较好地解决地震参数反演问题. 相似文献
9.
目的 解决粒子群算法易陷入局部最优解、出现早熟收敛从而导致求解精度不高的缺陷.方法 将高斯变异(Gaussian M utation)、Levy飞行策略与基本粒子群优化算法(PSO)进行混合,提出一种称为GLPSO混合粒子群算法.在该算法中粒子通过Levy飞行更新自己的位置,若粒子在若干次迭代后无法产生更优值,则在保存当前最优值的前提下进行高斯变异来保持种群多样性.结果 与结论通过对基准测试函数优化的实验结果对比,GLPSO在5个基准测试函数中的优化精度和全局搜索能力优于其他对比算法,GLPSO有更加出色的全局搜索能力和更高的求解精度. 相似文献
10.
胡旺等人在2007年提出了一种简化粒子群优化算法,基于他的思想,我们给出一个简化自适应粒子群优化算法,在该算法中权重采用标准粒子群算法的自适应权重公式,但是权重的最大值根据解的进化情况不断更新,解改进的成功率的越大权重最大值增大,反之,解改进的成功率的越小权重最大值减小.最后,通过几个典型例子对给出的算法进行检验并与其... 相似文献
11.
肖丽 《西南师范大学学报(自然科学版)》2011,36(2)
提出一种结合多样性策略的自适应粒子群优化算法,该算法在粒子群的全局优化过程中,使用根据种群搜索状态自适应调整邻域空间的局部搜索算法加强算法的局部搜索能力,并允许非优粒子具有引导种群搜索方向的可能性.在著名基准函数上的对比实验结果表明,这种混合粒子群优化算法能获得更高的搜索成功率和质量更好的解,特别在高维多峰函数优化上表现出较强的竞争力. 相似文献
12.
为了提高粒子群算法的收敛速度和全局收敛性,本文在标准粒子群算法的基础上作了改进,提出了一种带模拟退火步长的粒子群算法.通过典型函数的测试结果表明新算法比原来算法收敛到最优解的次数多,提出的新算法在全局搜索能力和收敛速度方面有所提高. 相似文献
13.
带时间窗车辆路径问题的混合粒子群算法 总被引:7,自引:1,他引:7
将粒子群优化算法与模拟退火算法结合,提出了一种求解车辆路径问题的混合粒子群算法.实例计算及与遗传算法比较的结果表明:应用混合粒子群算法可以快速地求得带时间窗车辆路径问题的优化解;该算法是一种求解离散组合优化问题的有效方法. 相似文献
14.
一种动态非线性改变惯性权的自适应粒子群优化算法 总被引:1,自引:0,他引:1
惯性权值线性递减(LDI)的粒子群算法不能很好地反映粒子搜索过程的复杂非线性行为,收敛速度和收敛精度仍不够理想。对此,提出一种动态非线性改变惯性权(DNI)的自适应粒子群算法。在该算法中通过引入非线性指数函数来描述惯性权值在进化过程中的动态变化特性,并通过数值实验确定了非线性函数关键控制参数的合适取值范围。通过典型测试函数验证算法的性能,并与文献报道的已有结果比较。实验表明:对单峰值函数优化问题,DNI自适应粒子群算法收敛速度明显优于LDI算法;对多峰值函数优化问题,DNI算法跳出局部最优的能力及收敛精度也好于LDI算法。 相似文献
15.
针对基本粒子群(PSO)算法在前期收敛速度较快和搜索精度差的缺陷,提出了一种带非均匀动态变异的改进粒子群优化方法.该方法通过引入非均匀动态变异算子不但克服了粒子群算法在后期易陷入局部最优的缺陷,而且极大地增强了群体的多样性,进而提高了算法的搜索效率.最后,通过两个复杂多峰函数的计算仿真,其结果表明该方法是非常有效的. 相似文献
16.
针对智能算法在解决大规模0-1背包问题时易陷入局部最优解、收敛速度慢的问题,提出一种基于直觉模糊熵的粒子群-模拟退火算法(IFEPSO-SA)。采用交换操作和模拟退火机制对粒子群算法中的局部最优解二次优化;然后,以种群直觉模糊熵(IFE)为测度,自适应改变惯性权重,并对种群进行变异操作。测试结果表明,IFEPSO-SA在解决大规模0-1背包问题时有较好的求解质量;仿真实验结果表明,IFEPSO-SA与基于直接模糊熵的粒子群算法(IFEPSO)相比,熵值波动较小,反映出IFEPSO-SA有更好的局部搜索能力,并且IFEPSO-SA在算法收敛速度和求解质量方面都优于IFEPSO以及经典的粒子群算法和模拟退火算法。 相似文献
17.
利用突变粒子群算法自动获取图像非线性增强函数的最佳变换参数,达到图像增强的效果。该算法基于粒子群算法原理,采用针对图像质量评价效果的新适应度函数(包括方差、信息熵、紧致度、信噪改变量以及像素差别五要素),提出一种基于突变机制的粒子群算法,有效增大粒子间的差异性和非均匀性,打破平衡态,从而增强系统内动力以提高系统进化的效率。实验表明,该算法具有较高的自适应性,即避免了陷入局部极小,加快了收敛速度,且增强质量评价明显提高。 相似文献
18.
作为一种新型智能算法,粒子群算法具有概念简单、易于实现等特点,但也存在容易陷入局部最优的缺点。为了尽可能找到问题的最优解,提高粒子群算法的收敛速度,提出一种带自适应飞行时间因子的粒子群算法,在算法中引入种群多样性和种群进化度两个参数,并根据这两个参数对算法性能的影响,让飞行时间因子随着这两个参数自适应改变。通过对4个基准函数的测试表明,改进后的粒子群算法较其他几种粒子群算法在收敛速度和收敛精度上都有一定提高。 相似文献
19.
一维下料问题的自适应广义粒子群优化求解 总被引:1,自引:0,他引:1
针对现有粒子群优化算法在求解组合优化问题时粒子速度迭代难以定义的问题,首先将粒子群优化算法与遗传算法相结合,利用交叉算子、变异算子,提出一种广义粒子群优化算法来求解一维下料问题;然后引入模拟退火算法作为自适应策略,避免算法陷入局部最优.仿真实验结果表明,采用自适应广义粒子群优化算法求解一维下料问题具有高效性和鲁棒性. 相似文献