首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文对渗杂梯度化的 nip 型α—Si 太阳电池的短路电流 J_(sc)和效率η作了计算。结果如下:1.0.5μ和1.0μ厚电池的本征 J_(sc)分别达23.3mα/cm~2和25.3mα/cm~2.它们很接近于Carlson 的计算结果.在表面反射和电极复盖光损失各占10%条件下算得0.5μ和1.0μ电池的效率分别为12.69%和14.4%。2.与0.5μ厚均匀渗杂的 nip 型 a—Si 实验电池比较,发现 V_(oc)很接近,但 J_(sc)、FF 和η比梯度化电池低得多,这显然是由于均匀渗杂实验电池中存在较大的复合损失和串联电阻引起的。如果用在消除复合损失条件下所得到的最佳填充因子0.7计算,0.5μ厚梯度化电池可以达到大于10%效率.  相似文献   

2.
本文根据半导体材料的性能参数对5μm厚度GaP/CuInS_2异质结单晶和多晶薄膜太阳电池在各种掺杂浓度下的光伏特性作了较严格的分析与计算。要计算中具体考虑到耗尽区密度W(或光电压V)的变化以及内表面复合损失对光电流J_L的影响,此外还用晶界复合损失模型计算了晶粒度对光电流及光伏特性的影响。发现存在一个最佳化的CulnS_2掺杂浓度Na_(max),对于单晶和R=4μm的多晶电池,Na_(max)=10~(16)/cm~3,相应的最大转换效率η分别为16.2%和15.2%。  相似文献   

3.
模拟一种高效GaAs/Si两结叠层电池结构,将硅材料作为叠层电池的一个底电池利用起来,拓展光谱吸收.分别讨论了隧穿结和子电池对叠层电池的影响,结果表明薄的GaAs隧穿结可以获得高效率的叠层电池,1.05μm厚的顶电池基区是子电池电流匹配的最优条件,厚的底电池有助于叠层电池效率的提高.优化后的叠层电池在一个太阳,AM l.5G光照条件下,效率可达到43.86%,其相应的开路电压Voc=1.76 V,短路电流密度Joc=28.64 mA/cm2,填充因子FF=87.25%,该设计为硅基高效太阳能电池的制备提供理论参考.  相似文献   

4.
用隧道-复合模型对n-ZnO/p-CuInSe2多晶异质结薄膜太阳电池的光电流和转换效率进行了理论计算,考虑到在多晶材料中的晶界复合损失,引入修正因子,并用Rothwarf的晶界复合模型进行修正.对晶粒半径R为1μm的电池进行计算,得到电池的短路电流密度为35.4mA/cm2,开路电压为0.42V,转换效率为10.1%.理论计算和实验结果基本一致.  相似文献   

5.
用晶界复合损失模型分析法计算MS和MIS型CdTe多晶薄膜太阳电池的短路电流和光谱响应。结果表明,掺杂浓度对J_(sc)的影响要比对晶粒度的影响强烈得多,在低掺杂浓度(Nd=10~(14)cm~(-3))下,细小晶粒度电池的J_(sc)很接近单晶电池的水平。与以往实验结果对比,发现在相同掺杂(N_d=10~(14)cm~(-3))和晶粒度(2R=1μm))下,计算值与测量值相当一致。  相似文献   

6.
微晶硅/晶体硅HIT结构异质结太阳电池的模拟计算与分析   总被引:1,自引:0,他引:1  
运用AFORS-HET程序模拟分析μc-Si(p)/μc-Si(i)/c-si(n)HIT结构异质结太阳电池的光伏特性,并研究发射层厚度、本征层厚度、本征层能隙宽度、界面态密度以及能带失配等参数对太阳能电池光伏特性的影响,计算结果表明:插入5nm较薄微晶硅本征层,电池的转换效率最佳;随着微晶硅本征层厚度增加,电池性能降低,电池的界面缺陷态显著影响电池的开路电压和填充因子,对能带补偿情况进行模拟分析,结果显示,随着价带补偿(△Ev)的增大,由界面态所带来的电池性能的降低逐渐被消除,当△Ev=0.25 eV时,界面态带来的影响几乎完全消除,通过优化各参数,获得微晶硅/晶体硅HlT结构异质结太阳能电池的最佳转换效率为19.86%.  相似文献   

7.
本文首次运用Rothwarf的晶界复合损失模型及其修正因子分析和计算p—n结类型多晶Si太阳电池的光电流和短路电流。导出多晶Si少子有效寿命τ*和扩散长度L*与晶粒度和晶界表面态密度的关系式,根据多晶Si表面态密度的测量数据算出各晶粒度下的τ*和L*,并用它们计算多晶Si电池的二极管暗电流。在上述基础上进一步计算10μ和25μ厚的n+—p和n+—p—p+两种多晶Si太阳电池的效率,得到如下的主要结果和结论。 1.在大晶粒度下10μ和25μ厚电池的Jsc(或η)之间的差别显著,当晶粒度变小时,这种差别不断缩小,而当晶粒半径R=10μ时,无论是n+--p或n+—p—p+类型,两种厚度电池的Jsc(或η)之间的差别同时消失。值得注意的是,有关Jsc和η变化的上述特点也出现在Lanza等用数字计算法解连续方程所得的严格计算结果中。这说明我们采用的分析和计算方法也能象严格数字计算法那样较准确地反映和描述多晶Si太阳电池内部载流子的收集与复合情况,另一方面数字计算法本身难以为其结果中所出现的上述特点提供明确物理解释。而用晶界复合损失模型及其修正因子却能给以清晰地说明。这也许是本方法的优点之一。 2.发现我们计算的Jsc和η随晶粒度而增长的规律显著不同于Hovel的结果。Hovel的Jsc从R=O.1μ开始明显上升,并在尺=10μ达最大值(即单晶水平)。而我们的Jsc和η从尺>1μ开始明显上升,但直到R=500μ还未完全达到最大值。用巳有多晶Si电池在各晶粒度下的Jsc测量数据与上述两种计算结果和规律对照,发现我们的结果和规律更符合实际,因而可作出初步判断;即我们所采用的分析计算方法比Hovel的方法有更大的合理性。  相似文献   

8.
本文通过射频磁控反应溅射实现高质量的AlN绝缘栅层,采用感应耦合等离子体(ICP)刻蚀出凹栅槽结构,将MIS结构和凹栅槽结构的优点相结合,研制成功AlGaN/GaN凹栅槽结构MIS HEMT器件,在提高器件栅控能力的同时,降低栅极漏电,提高击穿电压。器件栅长0.8μm,栅宽60μm,测得栅压为+5V时最大饱和输出电流为832mA/mm,最大跨导达到210mS/mm,栅压为-15V时栅极反向漏电为6nA/mm。  相似文献   

9.
本研究在保证碳化硼粉末充分热致密化的前提下,控制了晶粒长大,从而获得了高强度的微晶碳化硼制件。研究中采用硼酸碳热还原法在碳管炉中制得碳化硼粗粉,经振动球磨、酸洗和分级获得了微米级细粉,其化学成分和杂质含量符合国标GB5151-85中PB_4CH-1粉末的要求。本研究还进行了添加剂对热压碳化硼晶粒长大影响的实验。实验表明:硼的加入不仅降低了热压温度,而且有效地控制了晶粒长大,用同种粉末和工艺,晶粒度由6.00μm降至3.72μm。在普通烧结中,少量碳的加入显示了很好的烧结活化作用,但碳对热压没有显示积极的效果。氧化钐的加入明显促进晶粒长大,在相同条件下,晶粒度高达8.06μm。本研究制得的成品由于充分保证了热致密化,故其热压坯晶界强度高,断口晶粒细且均匀,抗弯强度与晶粒度之间的关系符合Osipov建立的方程:σ=σ_0+Kd~(-1/2)。其性能达到或超过了文献报导的最好水平。主要性能为:抗弯强度:578-585MPa;克努普硬度(负荷100g):2800—3000km/mm~2;孔隙度:<0.5%;平均晶粒度:1—2.5μm;比重:2.49—2.51g/cm~3。  相似文献   

10.
采用静电纺丝技术制备碳纳米纤维,通过油浴加热法制备碳纳米纤维负载Re-Pt_3Ni复合材料.为了研究该复合材料对电极的膜厚对染料敏化太阳能电池性能的影响,通过球磨以及喷涂法得到不同膜厚的对电极,分别为5、10、15、20μm,所得电池的能量转换效率分别为5.12%、7.67%、8.43%、8.09%.结果表明复合材料对电极膜厚存在一个最佳值,使电池的能量转换效率达到最高,同时,也表明复合材料有潜力成为Pt电极的替代品.  相似文献   

11.
用隧道-复合模型对n-ZnO/p-CuInSe2多晶异质结薄膜太阳电池的光电流和转换效率进行了理论计算,考虑到在多晶材料中的晶界复合损失,引入修正因子,并用Roth-warf晶界复合模型进行修正。对晶粒半径R为1μm的电池进行计算,得到电池的短路电流密度为35.4mA/cm^2,开路电压为0.42V,转换效率为10.1%。理论计算和实验结果基本一致。  相似文献   

12.
介绍高绒度MOCVD-ZnO:B透明导电薄膜用作非晶硅太阳电池前电极、非晶硅太阳电池BZO/p-a-SiC:H接触特性改善、非晶硅界面缓冲层对非晶硅锗电池性能的影响以及非晶硅锗电池性能的调控等方面的研究内容及结果。首先我们将自行研制的具有优异陷光效果的掺硼氧化锌BZO用作p-i-n型非晶硅太阳电池的前电极,并且将传统商业用U型掺氟二氧化锡FTO作为对比电极。结果表明相对FTO电池,尽管BZO电池的电流优势明显,但当本征层厚度较薄时其Voc和FF却较差。原因是相对于表面较为平滑的FTO,BZO表面呈大类金字塔的绒面结构会在本征层生长过程中触发阴影效应,形成大量的高缺陷材料区和漏电沟道,进而恶化电池的Voc和FF。在不修饰BZO表面形貌的情况下,通过调节非晶硅本征层的沉积温度来消弱BZO高绒度表面引起的这种不利影响,改善后的电池Voc和FF均有提升。在仅有Al背电极的情况下,当本征层厚度为200 nm时,BZO前电极非晶硅太阳电池效率达7.34%。其次,我们采用重掺杂的p型微晶硅来改善前电极掺硼氧化锌(ZnO:B)和窗口层p型非晶硅碳(p-aSiC)之间的非欧姆接触特性。通过优化插入层p型微晶硅的沉积参数(氢稀释比H_2/SiH_4、硼掺杂比B_2H_6/SiH_4)获得了较薄厚度下(20 nm)暗电导率高达4.2 S/cm的p型微晶硅材料。在本征层厚度约为150 nm,仅采用Al背反射电极的情况下,获得了效率6.37%的非晶硅顶电池,开路电压Voc和填充因子FF均较无插入层的电池有大幅提升。第三,采用射频等离子体增强化学气相沉积(RF-PECVD)技术,进行了非晶硅锗薄膜太阳电池的研究。针对非晶硅锗薄膜材料的本身特性,通过调控硅锗合金中硅锗的比例,实现了对硅锗薄膜太阳电池中开路电压和短路电流密度的分别控制。借助于本征层硅锗材料帯隙梯度的设计,获得了可有效用于多结叠层电池中的非晶硅锗电池。最后,介绍了针对非晶硅锗电池本征层高锗含量时界面带隙失配以及高界面缺陷密度造成电池开路电压和填充因子下降的问题,通过在P/I界面插入具有合适带隙的非晶硅缓冲层,不仅有效缓和了带隙失配,降低界面复合,同时也通过降低界面缺陷密度,改善内建电场分布从而提高了电池的收集效率。进一步引入I/N界面缓冲层以及对非晶硅锗本征层进行能带梯度设计,在仅采用Al背电极时,单结非晶硅锗电池转换效率达8.72%。总之,通过以上优化措施,最后获得了效率为14.06%的非晶硅/非晶硅锗/微晶硅三结叠层太阳电池。  相似文献   

13.
91钨合金断裂行为研究   总被引:6,自引:0,他引:6  
利用扫描电镜拉伸台,通过观察钨质量分数为91%,晶粒度不同的三种钨合金材料受载后裂纹生成、扩展的全过程和断口形貌,研究晶粒度对材料力学性能的影响。结果表明,晶粒度为1~3μm的钨合金表现为脆性沿晶断裂,裂纹沿着晶粒与晶粒之间的界面产生、扩展;晶粒度约为10~15μm的钨合金表现为脆性断裂,粘接相失效破坏,裂纹沿着晶粒与粘结相界面扩展;晶粒度约为30~40μm的钨合金表现为穿晶断裂,裂纹穿晶向前扩展。  相似文献   

14.
采用一步溶液法构筑了反式结构NiO/NH_2CH=NH2PbI_3(FAPbI_3)/PCBM/Ag钙钛矿电池。本文研究了钙钛矿薄膜FAPb I3结晶性、表面形貌及光电性能的影响。实验结果表明构筑反式钙钛矿电池短路电流Jsc=15.89 mA·cm-2,开路电压Voc=0.8 m V,填充因子FF=32%,光电转换效率为PCE=4.49%。  相似文献   

15.
采用afors-het数值模拟软件,针对a-Si(n)/a-Si(i)/c-Si(p)电池结构的非晶层主要参数,模拟研究并讨论了异质结电池的发射层厚度、发射层掺杂浓度、界面态和本征非晶层。提出了如下结论:发射层厚度主要影响短波光子吸收;随着厚度的增加,电池性能均下降;发射层重掺杂是获得好的转化效率的一个条件;界面态较低时对电池性能影响不大,当达到1014cm-2·eV-1时,电池性能很差;高质量的本征非晶层可以有效钝化硅片,降低界面态密度,提高电池性能,但应控制一定厚度内。  相似文献   

16.
针对传统CMOS电流乘除法器存在线性度不高、工作频率低等缺点,提出一种以平方根电路、平方/除法器电路为核心的基于MOS管跨导线性原理的新型高频高线性CMOS电流模乘/除法器。在TSMC0.35μm CMOS集成工艺下进行HSPICE仿真测试表明:该电路在3V电源电压下,-3dB带宽可达到35.1MHz,电源静态功耗为202.68μW,输出电流为0~25.1μA,非线性误差为0.85%,总谐波失真为0.14%。本文提出的乘除法器电路与Tanno、Lopez等提出的基于跨导线性原理的乘除法器电路相比,优点在于-3dB带宽提高了,功耗降低了,电源电压降低了,线性度提高了,精度提高了,并且采用了相对更先进的0.35μmCMOS工艺,可缩小芯片面积,节约成本。  相似文献   

17.
应用电子背散射衍射技术研究了具有针状铁素体/马氏体双相组织的高强度低合金钢的显微组织结构,且对其力学性能进行了检验.结果表明,这种钢种的平均晶粒尺寸达到了2μm级,属于细晶粒钢;双相组织中的马氏体相的体积分数为27.6%,铁素体相的体积分数为70.9%,且两相晶界取向差的半数为小角度晶界,有利于提高材料的塑性性能和形变能力,屈强比达到了0.674.讨论了晶粒尺寸、相体积分数和晶界取向差与材料力学性能的关系.  相似文献   

18.
基于等离子体增强化学气相沉积(PECVD)技术制备非晶硅太阳电池,通过微量调节氢稀释(R_H),研究其对本征非晶硅吸收层的光学带隙及微结构的影响。实验结果显示当R_H由6.5增加到10时,本征非晶硅吸收层的光学带隙由1.796eV提高到1.973eV,电池效率随R_H的降低先升高后降低。并在R_H=7时达到最大值,此时的本征非晶硅薄膜的光学带隙约为1.836eV,其电池效率达到8.4%(V_(oc)=897.2mV,J_(sc)=14.86mA/cm~2,FF=62.96%)。实验表明R_H的提高并不能单调增加电池的效率。通过对微结构的分析发现,这主要是由于R_H过低或过高时,其Si-H_2键成分比例较高,微结构因子R较大,使得薄膜中缺陷较多所引起电池恶化导致的。  相似文献   

19.
全固态染料敏化纳米二氧化钛/铜酞菁复合太阳能电池   总被引:1,自引:0,他引:1  
利用铜酞菁空穴传输材料制备了全固态染料敏化纳米TiO2太阳能电池.研究了铜酞菁厚度对电池性能的影响,结构优化后,得到的性能参数,开路电压约为618 mV,短路电流约为0.24 mA/cm2(氙灯照射,光强约为80 mW/cm2),注入因子为54.5%,总光电转换效率为0.1%.对铜酞菁层进行碘掺杂后,电池的短路电流得到了提高,而开路电压有所下降.电池暗反应研究表明,电流的升高是由于碘掺杂导致载流子浓度增大,载流子输运能力增强,电压的下降则是由于碘的掺入削弱了电池的整流特性.  相似文献   

20.
使用丝网印刷法制备了阳极膜厚为22.5μm的大面积ZnO染料敏化太阳能电池(ZnO-DSC),活性面积18.24cm2。在ZnO浆料中添加乙酸可以提高阳极薄膜的染料吸附量,添加乙酸后染料吸附量由1.867×10-7mol/cm2增至2.832×10-7mol/cm2。在ZnO薄膜表面引入超薄TiO2保护层提高了ZnO薄膜与导电玻璃基底的粘接力。将上述两种方法同时应用于制备ZnO-DSC,光伏性能测试结果表明,制得的DSC短路电流和开路电压分别提高至11.95mA/cm2和0.69V,电池的光电转化效率由未经任何处理时的2.56%提高到3.47%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号