共查询到17条相似文献,搜索用时 48 毫秒
1.
图的拉普拉斯矩阵最大特征值定义为图的拉普拉斯谱半径,它是刻画图结构性质的重要参数。本文主要介绍了在所有给定独立数为α的n阶树中具有最大拉普拉斯谱半径的唯一极图,其中[|n/2|]≤α≤(n-1)。 相似文献
2.
设图G为简单连通图,图G的独立数α=α(G)指的是图中顶点独立集最大基数,本文确定了给定独立数α=n-2,n-3条件下一类n阶连通图的无符号拉普拉斯谱半径的下界。 相似文献
3.
4.
1986年,R. A. Brualdi 和 E. S. Solheid 提出关于给定某类图中谱半径最大的图的问题.近几十年,这个问题吸引了众多图论工作者的兴趣。这篇论文研究了具有 个顶点和 个悬挂点的双圈图中无号拉普拉斯谱半径,同时给出了这类图中无号拉普拉斯谱半径最大的图。 相似文献
5.
令B_(n,n+1)~W表示阶为n的赋权双圈图的集合,W={w_1,w_2,…,w_n+1},其中w_1≥w_2≥…≥w_n+1>0为权集合.本文确定了它们中谱半径最大的赋权双圈图的结构及部分权值的分布情况. 相似文献
6.
对于连通图G,矩阵Q(G)=D(G) A(G)称为图G的拟拉普拉斯矩阵,其中D(G)为图的度对角矩阵,A(G)为图的邻接矩阵.本文利用矩阵的一些性质,推导出连通图的拟拉普拉斯谱半径的一个上界.并将该上界与已有的一些结论结合具体图例作了优越性比较. 相似文献
7.
8.
利用无符号拉普拉斯谱半径与特征向量之间的关系式,研究有n个顶点、最小度为δ且边连通度k′<δ的这一类图中无符号拉普拉斯谱半径最大的图.假设G0是这一类图中无符号拉普拉斯谱半径最大的图,证明G0?Bkn,′δ,其中Bkn,′δ是从Kδ+1和Kn-δ-1之间加入k′条边获得的. 相似文献
9.
根据全通道双圈图具有任意圈中不存在度小于3的顶点的性质,利用邻接矩阵,得到了所有含n个向量的全通道双圈图中谱半径最大的图,并判定了其存在的唯一性. 相似文献
10.
周后卿 《邵阳学院学报(自然科学版)》2009,6(3):15-17
设G=(V,E)是一个简单的连通图;用A(G),D(G),分别表示G的邻接矩阵和顶点的度对角矩阵,令L(G)=D(G)-A(G)表示G的拉普拉斯矩阵,设L(G)的特征值为μ1≤μ2≤ ... ≤μn,其最大特征值称为图G的谱半径,记作μ=μn.本文就循环图的拉普拉斯谱半径的下界给与讨论,我们得到了两个结论. 相似文献
11.
在本文中, 我们刻画了给定团数的连通图中取得最小距离无符号拉普拉斯谱半径的极图. 相似文献
12.
若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离.令TrG(vi)表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵.图G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.该文确定了给定匹配数的n个点的图的距离无符号拉普拉斯谱半径的下界. 相似文献
13.
图G的顶点集V(G)={v1,v2,…,vn},其路矩阵记为P(G)=(pij)n×n,pij表示图中vi,vj之间内部顶点不相交路径的最大数目。定义路拉普拉斯矩阵和路无符号拉普拉斯矩阵并得到了其谱半径和能量的界。 相似文献
14.
图的Laplace spread定义为图的最大Laplace特征值与次小Laplace特征值之差.利用多项式函数的性质,得到了具有最大Laplace spread的双圈图. 相似文献
15.
研究定义在Γn,γ(n≥2γ+1,γ≥2)中的树,借助夺邻、嫁接等移边定理,通过构造一种新的移边运算Operation I,给出了Γn,γ中前两大谱半径,并证明了T(n,r),S(n,r)是达到前两大谱半径的图. 相似文献
16.
把两个图的邻接谱距离推广到两个图的Laplacian谱距离,给出了任意两个图的Laplacian谱距离的一般性结果,最后计算出了一些特殊图的Laplacian谱距离。 相似文献
17.
该文研究了图的两种特殊性质,这两种特殊性质均具有稳定性.首先对原图进行了闭包运算并构造了原图的闭包,将原图是否具有某性质转化到了闭包补图中;其次对闭包补图的结构进行了合理的分类讨论;最后找到了在一定条件下当补图的无符号拉普拉斯谱半径不大于2k时,原图的独立数不超过k,或在一定条件下当补图的无符号拉普拉斯谱半径不大于n-2时,原图是哈密尔顿-连通的. 相似文献