首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
运用FORS-HET数值模拟软件,对a-Si(n)/a-Si(i)/c-Si:(p)/a-Si(i)/pm-Si(p+)结构的太阳能电池进行模拟优化,依次讨论了不同结构,发射层,本征层,背场对电池性能的影响。通过计算不同结构的太阳能电池,结果表明:通过模拟计算显示太阳能电池性能最高的是双面HIT结构;电池性能随着发射层厚度的增加,载流子的收集效率降低造成各项参数逐渐降低,随着掺杂浓度的提高使得内建电场强度增加,性能提高最终趋于稳定;随本征层厚度的增加电池各个参数逐渐降低;增加背场能够提高电池性能。通过优化背场带隙在1. 6-1. 8 e V掺杂浓度NB≥1×1019cm-3的薄膜硅材料且本征层的厚度应该控制在3 nm,发射层厚度在3-5 nm较合适。理论计算表明双面HIT太阳能电池转化效率可以高达29. 17%.  相似文献   

2.
微晶硅/晶体硅HIT结构异质结太阳电池的模拟计算与分析   总被引:1,自引:0,他引:1  
运用AFORS-HET程序模拟分析μc-Si(p)/μc-Si(i)/c-si(n)HIT结构异质结太阳电池的光伏特性,并研究发射层厚度、本征层厚度、本征层能隙宽度、界面态密度以及能带失配等参数对太阳能电池光伏特性的影响,计算结果表明:插入5nm较薄微晶硅本征层,电池的转换效率最佳;随着微晶硅本征层厚度增加,电池性能降低,电池的界面缺陷态显著影响电池的开路电压和填充因子,对能带补偿情况进行模拟分析,结果显示,随着价带补偿(△Ev)的增大,由界面态所带来的电池性能的降低逐渐被消除,当△Ev=0.25 eV时,界面态带来的影响几乎完全消除,通过优化各参数,获得微晶硅/晶体硅HlT结构异质结太阳能电池的最佳转换效率为19.86%.  相似文献   

3.
通过对非晶硅/晶体硅(a-Si/c-Si)异质结能带不连续、发射结掺杂以及界面态密度进行分析,研究它们对a-Si/c-Si异质结的界面特性,以及a-Si(N+)/c-Si(P)结构电池性能的影响.研究发现,能带不连续以及a-Si发射结高掺杂有利于实现界面复合机制由以悬挂键复合主导的复合机制向由少数载流子复合占主导的SRH(Shockly Read-Hall)复合机制转变,有效降低界面复合速率.AFORS-HET软件模拟显示:在c-Si(P)衬底掺杂浓度为1.6×1016 cm-3时,a-Si(N+)发射结掺杂浓度大于1.5×1020 cm-3是获得高电池效率的必要条件;与短路电流密度相比,开路电压受a-Si/c-Si界面态密度影响更明显.  相似文献   

4.
通过对光伏器件的模拟分析可以进一步提高对器件的认识深度,在实际工艺中利于优化器件制备条件,为高效钙钛矿太阳电池提供新思路.借助SCAPS模拟软件研究钙钛矿电池中钙钛矿吸收层、CH_3NH_3PbI_(3-x)Cl_x/TiO_2界面、TCO/TiO_2界面中缺陷态密度对电池性能的影响,模拟表明CH_3NH_3P I_(3-x)Cl_x中缺陷态密度和缺陷能级位置对器件效率的影响非常大,当缺陷态密度小于10~(16)cm~(-3)时,器件光电转换效率都能保持较高数值,达到16%以上.CH_3NH_3PbI_(3-x)Cl_x/TiO_2界面层中CH_3NH_3PbI_(3-x)Cl_x缺陷态密度对器件的FF影响较大,当缺陷态密度小于10~(17)cm~(-3)时器件填充因子都能保持较高的数值,达到78%以上.TiO_2缺陷态密度降低和掺杂浓度提高对器件填充因子和开路电压都有利.TCO/TiO_2界面层中适当增大窗口层掺杂浓度和带隙可以有效改善器件的光伏性能.  相似文献   

5.
采用AFORS-HET和MATLAB从理论上研究了缓冲层对HIT电池性能的影响机理.首先对P层进行优化,发现高掺杂、薄厚度的P层有利于电池效率的提升.缓冲层主要的影响有两方面,一是界面态密度,二是与晶体硅形成能带失配.模拟发现,界面态增大导致复合中心密度上升,开路电压下降;能带失配的增大可以降低界面处少子浓度,起到场钝化效果,提高开路电压.短路电流和填充因子受到界面处的影响较小,与P层的工艺条件有比较大的关系.  相似文献   

6.
介绍高绒度MOCVD-ZnO:B透明导电薄膜用作非晶硅太阳电池前电极、非晶硅太阳电池BZO/p-a-SiC:H接触特性改善、非晶硅界面缓冲层对非晶硅锗电池性能的影响以及非晶硅锗电池性能的调控等方面的研究内容及结果。首先我们将自行研制的具有优异陷光效果的掺硼氧化锌BZO用作p-i-n型非晶硅太阳电池的前电极,并且将传统商业用U型掺氟二氧化锡FTO作为对比电极。结果表明相对FTO电池,尽管BZO电池的电流优势明显,但当本征层厚度较薄时其Voc和FF却较差。原因是相对于表面较为平滑的FTO,BZO表面呈大类金字塔的绒面结构会在本征层生长过程中触发阴影效应,形成大量的高缺陷材料区和漏电沟道,进而恶化电池的Voc和FF。在不修饰BZO表面形貌的情况下,通过调节非晶硅本征层的沉积温度来消弱BZO高绒度表面引起的这种不利影响,改善后的电池Voc和FF均有提升。在仅有Al背电极的情况下,当本征层厚度为200 nm时,BZO前电极非晶硅太阳电池效率达7.34%。其次,我们采用重掺杂的p型微晶硅来改善前电极掺硼氧化锌(ZnO:B)和窗口层p型非晶硅碳(p-aSiC)之间的非欧姆接触特性。通过优化插入层p型微晶硅的沉积参数(氢稀释比H_2/SiH_4、硼掺杂比B_2H_6/SiH_4)获得了较薄厚度下(20 nm)暗电导率高达4.2 S/cm的p型微晶硅材料。在本征层厚度约为150 nm,仅采用Al背反射电极的情况下,获得了效率6.37%的非晶硅顶电池,开路电压Voc和填充因子FF均较无插入层的电池有大幅提升。第三,采用射频等离子体增强化学气相沉积(RF-PECVD)技术,进行了非晶硅锗薄膜太阳电池的研究。针对非晶硅锗薄膜材料的本身特性,通过调控硅锗合金中硅锗的比例,实现了对硅锗薄膜太阳电池中开路电压和短路电流密度的分别控制。借助于本征层硅锗材料帯隙梯度的设计,获得了可有效用于多结叠层电池中的非晶硅锗电池。最后,介绍了针对非晶硅锗电池本征层高锗含量时界面带隙失配以及高界面缺陷密度造成电池开路电压和填充因子下降的问题,通过在P/I界面插入具有合适带隙的非晶硅缓冲层,不仅有效缓和了带隙失配,降低界面复合,同时也通过降低界面缺陷密度,改善内建电场分布从而提高了电池的收集效率。进一步引入I/N界面缓冲层以及对非晶硅锗本征层进行能带梯度设计,在仅采用Al背电极时,单结非晶硅锗电池转换效率达8.72%。总之,通过以上优化措施,最后获得了效率为14.06%的非晶硅/非晶硅锗/微晶硅三结叠层太阳电池。  相似文献   

7.
为非晶彬多晶硅太阳电池设计增加了一层重掺杂的非晶硅薄膜作为背场,利用AMPS程序模拟发现电池的光伏性能明显改善.模拟中还发现,有无背场时,电池的转换效率分别在吸收层厚度为5μm和15μm时达到峰值,故有背场的太阳电池更有利于节约材料,降低成本.  相似文献   

8.
双栅非晶InGaZnO薄膜晶体管(DG a-IGZO TFTs)具有比单栅a-IGZO TFTs更优良的电学性能.文中基于a-IGZO/SiO_2界面缺陷态呈指数型分布的模型,讨论了在界面缺陷态影响下双栅驱动的DG a-IGZO TFTs有源层厚度对电学性能的影响.研究结果表明:随着有源层厚度的减小,双栅驱动模式下DG a-IGZO TFTs两栅极的耦合作用增强,有源层上、下表面的导电沟道向体内延伸,使器件的场效应迁移率显著增加;界面缺陷态对DG a-IGZO TFTs场效应迁移率的影响随着有源层厚度的减小而降低,对亚阈值摆幅的影响随着有源层厚度的减小而增大.  相似文献   

9.
采用射频等离子体增强化学气相沉积(RF-PECVD)方法制备非化学计量比氢化非晶碳化硅(a-SiC:H)薄膜材料,借助紫外可见(UV-Vis)光谱、激光拉曼(Raman)光谱和傅里叶变换红外(FTIR)光谱等手段,研究了p-i-n型非晶硅(a-Si:H)薄膜太阳能电池p层a-SiC:H薄膜材料的制备与光学性能.研究结果表明甲烷和硅烷掺杂比能影响a-Si:H薄膜成键情况,而射频功率一定程度上能影响薄膜沉积速率,该研究结果可为制备转换效率高、性能稳定的p-i-n型非晶硅薄膜太阳能电池提供支持.  相似文献   

10.
根据Yaniv的界面理论,利用紧束缚近似下的格林函数方法,研究了绝缘体NaCl的层厚度对NaCl-Si(111)界面电子特性的影响。结果表明,(1)Si上覆盖一层NaCl时,导致局域在Si-边的价带态密度显著降低和导带态密度显著升高,这可能是由于NaCl的离子性将Si的价带电子排斥到导带的缘故;(2)当NaCl层厚增加时,局域在Si-边的态密度几乎不受影响,这与NaCl-Si(111)界面热垒形成  相似文献   

11.
采用SCAPS软件,对CZTS/Zn(O,S)/Al:ZnO结构的薄膜太阳电池进行数值仿真,主要模拟研究Zn(O,S)的禁带宽度和电子亲和势、缓冲层的厚度及掺杂浓度、环境温度对电池性能的影响.结果表明:当Zn(O,S)的厚度和载流子浓度分别为50 nm和10~(17)cm~(-3)时,电池的转换效率可达14.90%,温度系数为-0.021%K~(-1).仿真结果为Zn(O,S)缓冲层用于CZTS太阳电池提供了一定的指导.  相似文献   

12.
TOPCon电池采用超薄氧化硅与掺杂多晶硅对晶体硅前后表面进行钝化并实现选择性载流子输运,提高了晶体硅太阳能电池的效率,但其中的一些物理机理尚未完全被理解.从理论上模拟研究了氧化硅厚度、氧化硅中的介孔密度、多晶硅掺杂浓度等参数对TOPCon太阳能电池性能的影响.结果表明:电池的性能随着氧化硅厚度的增加呈先缓慢提升后急剧...  相似文献   

13.
采用高压高功率RF-PECVD技术,研究了三个系列的p层微结构特性和光学特性对电池性能的影响,获得了适合n-i-p微晶硅太阳电池的p型掺杂层.实验结果表明,p层的微结构特性与电池性能密切相关,具有特定结构的p层能够使电池性能大幅度提高,获得转换效率为8.17%(Voc=0.49V,Jsc=24.9mA/cm2,FF=67%)的单结微晶硅太阳电池及转换效率为10.93%(Voc=1.31V,Jsc=13.09mA/cm2,FF=64%)的叠层太阳电池.  相似文献   

14.
运用AMPS-1D软件对n-β-FeSi_2/p-Si结构的异质结太阳电池进行模拟,分别讨论了在其他参数不变的情况下,改变β-FeSi_2层的厚度、β-FeSi_2层的掺杂浓度以及改变太阳电池的工作温度对电池性能的影响。模拟结果表明:β-FeSi_2层厚度增加时,转换效率和短路电流有较大的提高;开路电压也略有提升;填充因子则随着厚度的增加呈下降趋势。β-FeSi_2层掺杂浓度增加时,转换效率和开路电压有较大的提高;短路电流略微有所减小;而填充因子则先增加后减小,最后趋于稳定。工作温度增加时,转换效率和填充因子减小,而短路电流和开路电压则增大。经过优化参数,该结构的太阳电池转换效率达到26.241%。  相似文献   

15.
采用二次固相法合成具有层状结构的电子导电材料-LiNi0.8Co0.15Al0.05O2-δ(LNCA),并将其与离子导电材料Sm掺杂CeO2复合,获得具有电子-离子混合导电性的复合材料.并以此为功能层,构造了无电解质隔膜层燃料电池(Electrolyte Free Manbrane Fuel Cell,EFFC).研究了功能层的厚度以及电子-离子导电材料的比例对电池性能的影响,并阐述了影响机制.该电池在550℃下获得了937 mW·cm-2的功率输出,且具备在更低温度下操作的可行性.  相似文献   

16.
采用射频磁控溅射法制备了以非晶铋掺杂氧化铟锌(a-IZBO)为沟道层的薄膜晶体管(TFTs).相比本征的氧化铟锌薄膜晶体管,a-IZBO-TFTs显示出更低的关态电流,正向偏移的开启电压,表明铋掺杂能有效抑制载流子浓度.在铋掺杂含量为原子百分比8.6%时达到最佳的电学性能:载流子迁移率为7.5cm~2/(V·s),开关比为3×10~8,亚阈值摆幅为0.41V/decade.使用光致发光激发谱和X射线光电子能谱评价了a-IZBO沟道层中的氧空位缺陷,分析结果证实了铋的掺杂确实有效地减少了氧空位,从而抑制了半导体沟道层中的载流子浓度,对a-IZO-TFTs的总体电学性能改善起到较大的作用.  相似文献   

17.
运用AMPS-1D软件对n-Mg_2Si/p-Si异质结太阳电池进行模拟,依次讨论了Mg_2Si层厚度、掺杂浓度和温度对电池性能的影响。结果表明:随着Mg_2Si层厚度的增加,短路电流和转换效率均有较大提高;开路电压也略有升高。随着温度升高,短路电流逐渐升高,转换效率、开路电压及填充因子均不断降低。室温下,Mg_2Si层轻掺杂时的掺杂浓度在5×10~(19)cm~(-3)处,转换效率达到最大值5.518%。而同样条件下Mg_2Si层重掺杂时的转换效率更高,当掺杂浓度达到10~(21)cm~(-3)后,转换效率最大值为11.508%,填充因子最大值为0.868。  相似文献   

18.
运用半导体物理理论和功率器件模拟软件(SILVACO-TCAD),研究了新型宽禁带材料SiC槽栅结构IGBT功率半导体器件的电学特性,模拟了不同厚度和掺杂浓度漂移层和缓冲层的IGBT器件的阈值电压、开关特性和导通特性曲线,并分析了漂移层和缓冲层厚度及掺杂浓度对电学特性的影响。结果表明,当SiC-IGBT功率器件漂移层和缓冲层厚度分别为65 μm和2.5 μm,掺杂浓度分别为1×1015和5×1015cm-3时,得到击穿电压为3400 V,阈值电压为8 V。  相似文献   

19.
采用掺杂锰氧化物MnOx的聚乙烯醇(polyvinylalcohol,PVA)基碳包覆(CF0.79@C-MnOx)对氟化碳(CF0.79)进行改性.为提升锂氟化碳电池倍率性能,进一步探讨碳化温度、氧化温度和包覆层厚度对制备的CF0.79@C-MnOx复合材料电化学性能的影响,以此优化氟化碳包覆层获得界面改良最佳优化机制.实验结果表明:优化碳化温度,可得到导电性最好的碳层;优化氧化温度,可得到结晶性好的锰氧化物;优化PVA和Mn(NO3)2浓度来调控包覆层厚度,可进一步改善氟化碳的界面,促进锂离子扩散到氟化碳电极上.微观形貌表征及电化学性能分析均表明,CF0.79@C-MnOx-350℃氩气-400℃氧气-0.25mol/LMn(NO3)2-0.25mol/LPVA具有最佳的性能,在高的放电倍率下,无论在倍率性能还是电压平台,...  相似文献   

20.
利用Afors-het一维器件模拟仿真软件,研究传统CdS/Sb2S3异质结太阳电池器件中Sb2S3吸收层和CdS缓冲层厚度、带隙、吸收层受主浓度以及缺陷对电池性能的影响。结果表明,一定厚度的吸收层可以提高器件的短路电流密度,但过厚的吸收层会减小填充因子。研究CdS薄膜发现,过厚的CdS对电池的开路电压,短路电流密度以及填充因子损害较大。Sb2S3最优的带隙宽度在1.5~1.6 eV之间。提高Sb2S3受主浓度可以有效改善开路电压,但施主缺陷态密度与缺陷态在能级中能量的增加将会使电池效率降低。同时模拟结果表明,当吸收层中载流子寿命达到10-7 s时,电池的短路电流密度可以得到明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号