首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lee MG  Wynder C  Cooch N  Shiekhattar R 《Nature》2005,437(7057):432-435
  相似文献   

3.
4.
J Magram  K Chada  F Costantini 《Nature》1985,315(6017):338-340
At different stages of mammalian development, distinct embryonic, fetal and adult haemoglobins are synthesized in erythroid cells, a process termed haemoglobin switching. The cellular and molecular mechanisms controlling haemoglobin switching have been intensively studied, but remain poorly understood. To study the developmental regulation of globin gene expression, we have produced transgenic mice in which cloned globin genes are present in erythroid cells throughout development. Recently, we reported that adult mice in several transgenic lines carrying a hybrid mouse/human adult beta-globin gene, expressed the gene in a correct tissue-specific manner. This finding raised the question of whether an exogenous globin gene could also be subject to appropriate stage-specific regulation. We report here that the hybrid beta-globin gene, like the endogenous adult beta-globin genes, is inactive in yolk sac-derived embryonic erythroid cells and is expressed for the first time in fetal liver erythroid cells. Our results indicate that a stage-specific pattern of expression can be conferred by cis-acting regulatory elements closely linked to an adult beta-globin gene. They also suggest that the embryonic and adult beta-globin genes in the mouse are activated (or repressed) by distinct trans-acting regulatory factors present in embryonic, fetal and adult erythroid cells.  相似文献   

5.
6.
7.
Smith DJ  Whitehouse I 《Nature》2012,483(7390):434-438
Fifty per cent of the genome is discontinuously replicated on the lagging strand as Okazaki fragments. Eukaryotic Okazaki fragments remain poorly characterized and, because nucleosomes are rapidly deposited on nascent DNA, Okazaki fragment processing and nucleosome assembly potentially affect one another. Here we show that ligation-competent Okazaki fragments in Saccharomyces cerevisiae are sized according to the nucleosome repeat. Using deep sequencing, we demonstrate that ligation junctions preferentially occur near nucleosome midpoints rather than in internucleosomal linker regions. Disrupting chromatin assembly or lagging-strand polymerase processivity affects both the size and the distribution of Okazaki fragments, suggesting a role for nascent chromatin, assembled immediately after the passage of the replication fork, in the termination of Okazaki fragment synthesis. Our studies represent the first high-resolution analysis--to our knowledge--of eukaryotic Okazaki fragments in vivo, and reveal the interconnection between lagging-strand synthesis and chromatin assembly.  相似文献   

8.
9.
10.
Site-specific recognition of DNA in eukaryotic organisms depends on the arrangement of nucleosomes in chromatin. In the yeast Saccharomyces cerevisiae, ISW1a and related chromatin remodelling factors are implicated in establishing the nucleosome repeat during replication and altering nucleosome position to affect gene activity. Here we have solved the crystal structures of S. cerevisiae ISW1a lacking its ATPase domain both alone and with DNA bound at resolutions of 3.25?? and 3.60??, respectively, and we have visualized two different nucleosome-containing remodelling complexes using cryo-electron microscopy. The composite X-ray and electron microscopy structures combined with site-directed photocrosslinking analyses of these complexes suggest that ISW1a uses a dinucleosome substrate for chromatin remodelling. Results from a remodelling assay corroborate the dinucleosome model. We show how a chromatin remodelling factor could set the spacing between two adjacent nucleosomes acting as a 'protein ruler'.  相似文献   

11.
Several mammalian species including sheep[1,2], bo- vine[3], goats[4], mice[5], pigs[6], cat[7] and rabbits[8], have been successfully cloned by somatic nuclear transfer (NT), but the efficiency of this process is poor, with only a small proportion of the…  相似文献   

12.
F Thoma  R T Simpson 《Nature》1985,315(6016):250-252
The structure of the nucleosome core particle, the basic structural subunit of chromatin, is well known. Although nucleosomes often appear to be positioned randomly with respect to DNA sequences, in some cases they seem to occupy precisely defined positions on the DNA. The yeast plasmid TRP1ARS1 contains three precisely positioned, stable nucleosomes, I, II and III, which are flanked by nuclease-sensitive regions. Our aim in the present study was to determine whether the positions of these three nucleosomes relate to (1) protein-DNA interactions; (2) the limited space between nuclease-sensitive regions, which is just long enough to accommodate three yeast nucleosomes (that is, boundary conditions); or (3) proximity to the putative origin of replication in one of the nuclease-sensitive regions. We have tested these alternatives by analysing the positions of nucleosomes after insertion of various lengths of DNA into this region and assembly of chromatin in vivo. Our results suggest that specific protein-DNA interactions are the most likely determinants of these nucleosome positions.  相似文献   

13.
The RCAF complex mediates chromatin assembly during DNA replication and repair   总被引:42,自引:0,他引:42  
Chromatin assembly is a fundamental biological process that is essential for the replication and maintenance of the eukaryotic genome. In dividing cells, newly synthesized DNA is rapidly assembled into chromatin by the deposition of a tetramer of the histone proteins H3 and H4, followed by the deposition of two dimers of histones H2A and H2B to complete the nucleosome-the fundamental repeating unit of chromatin. Here we describe the identification, purification, cloning, and characterization of replication-coupling assembly factor (RCAF), a novel protein complex that facilitates the assembly of nucleosomes onto newly replicated DNA in vitro. RCAF comprises the Drosophila homologue of anti-silencing function 1 protein ASF1 and histones H3 and H4. The specific acetylation pattern of H3 and H4 in RCAF is identical to that of newly synthesized histones. Genetic analyses in Saccharomyces cerevisiae demonstrate that ASF1 is essential for normal cell cycle progression, and suggest that RCAF mediates chromatin assembly after DNA replication and the repair of double-strand DNA damage in vivo.  相似文献   

14.
Subtypes of medulloblastoma have distinct developmental origins   总被引:2,自引:0,他引:2  
Medulloblastoma encompasses a collection of clinically and molecularly diverse tumour subtypes that together comprise the most common malignant childhood brain tumour. These tumours are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) after aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH subtype). The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT subtype) arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumours infiltrate the dorsal brainstem, whereas SHH-subtype tumours are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem which included aberrantly proliferating Zic1(+) precursor cells. These lesions persisted in all mutant adult mice; moreover, in 15% of cases in which Tp53 was concurrently deleted, they progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence, to our knowledge, that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH- and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.  相似文献   

15.
Loppin B  Bonnefoy E  Anselme C  Laurençon A  Karr TL  Couble P 《Nature》2005,437(7063):1386-1390
In sexually reproducing animals, a crucial step in zygote formation is the decondensation of the fertilizing sperm nucleus into a DNA replication-competent male pronucleus. Genome-wide nucleosome assembly on paternal DNA implies the replacement of sperm chromosomal proteins, such as protamines, by maternally provided histones. This fundamental process is specifically impaired in sésame (ssm), a unique Drosophila maternal effect mutant that prevents male pronucleus formation. Here we show that ssm is a point mutation in the Hira gene, thus demonstrating that the histone chaperone protein HIRA is required for nucleosome assembly during sperm nucleus decondensation. In vertebrates, HIRA has recently been shown to be critical for a nucleosome assembly pathway independent of DNA synthesis that specifically involves the H3.3 histone variant. We also show that nucleosomes containing H3.3, and not H3, are specifically assembled in paternal Drosophila chromatin before the first round of DNA replication. The exclusive marking of paternal chromosomes with H3.3 represents a primary epigenetic distinction between parental genomes in the zygote, and underlines an important consequence of the critical and highly specialized function of HIRA at fertilization.  相似文献   

16.
Nucleosome mobilization catalysed by the yeast SWI/SNF complex.   总被引:18,自引:0,他引:18  
  相似文献   

17.
One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating gammaH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of gammaH2AX in vivo and efficiently dephosphorylates gammaH2AX in vitro. gammaH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets gammaH2AX after its displacement from DNA. The dephosphorylation of gammaH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.  相似文献   

18.
核小体是构成真核生物染色质的基本结构单位,体内研究核小体及染色质结构受到诸多因素限制,体外重构核小体结构是研究与核小体及染色质结构相关课题的一种重要的方法手段.实验将ES1,CS1以及601DNA序列克隆到载体中,通过PCR大量扩增回收得到目的DNA条带,表达纯化了4种组蛋白且装配成组蛋白八聚体,在盐透析的条件下组装形成核小体结构,利用EB染色以及Biotin标记的方法分析检测了形成核小体的效率.结果显示,在盐透析的条件下,可以有效的组装形成核小体结构,而且随着组蛋白八聚体与DNA的比例增加,核小体的形成效率显著提高.本实验为核小体定位、染色质重塑及组蛋白变体等表观遗传学以及结构生物学领域的研究奠定一定的基础.  相似文献   

19.
Saveliev A  Everett C  Sharpe T  Webster Z  Festenstein R 《Nature》2003,422(6934):909-913
Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号