首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
本文讨论了用激光对陶瓷零件表面作微细加工的一些基本问题,余量去除、已加工表面完整性和尺寸精度等,采用声-光调QYAG激光,可保证已加工表面的高度完整性,采用短焦深的聚焦光具并降低焦斑功率密度,可以减小已加工表面的尺寸偏差。  相似文献   

2.
精密切削中影响零件加工表面完整性的因素分析   总被引:1,自引:0,他引:1  
分析了精密切削中影响零件加工表面完整性的因素,分析了各因素对加工表面完整性的影响,指出刀刃几何形状,进给量,刀具磨损等加工表面粗糙度影响最大,刀刃钝圆半径对加工表面的变质层的影响最大,从而合理地采取措施,改善零件的加工表面完整性。  相似文献   

3.
针对功能玻璃硬度高、脆性大、容易在已加工表面产生裂纹和凹坑的特性,提出基于大刃倾角刀具的玻璃切削加工方法.该方法能在亚毫米级的切削深度下高效地获得无裂纹和凹坑的完整表面.文中分析了大刃倾角刀具切削玻璃的机理以及刀具参数、切削用量对已加工表面质量的影响.实验结果表明:大刃倾角刀具切削玻璃时,表面粗糙度R_a达0.21μm,表面完整性优于传统的玻璃精磨时的表面;要获得较好的已加工表面质量,刀具参数和切削用量都存在一个较佳的取值范围.  相似文献   

4.
以钛合金TC4为研究对象,选择表面完整性评价标准数据组(包括表面形貌、表面粗糙度、表面层显微硬度和表面残余应力)作为评价指标,采用单因素试验设计法,利用光学轮廓仪、显微硬度计和盲孔法残余应力测量仪获得低塑性滚压加工表面形貌、微观硬度分布和残余应力状态,对比分析了工艺参数(滚压速度、进给速度、液压油预压力和滚压道次)对低塑性滚压加工表面完整性的影响程度.结果表明:液压油预压力对滚压加工表面形貌、表面粗糙度及加工表面显微硬度和残余应力的影响程度最大,滚压速度的升高会增大加工表面粗糙度值,增加滚压道次会使加工表层硬化程度和残余压应力幅值变大;在设计实验范围内,钛合金TC4低塑性滚压加工采用高的液压油预压力和多道次加工可获得更优的加工表面完整性.  相似文献   

5.
对磨削、铣削加工得到的淬硬钢SKD11表面完整性进行了研究.通过对比干磨削和干铣削加工工件表面层的金相组织.发现干铣削时,铣刀后刀面磨损引起的铣削温度升高对工件表面完整性有很大的影响.随着加工温度升高,工件表面逐渐产生回火马氏体,这是造成工件表面硬度下降的主要原因.进一步的试验表明,如果选用合适的刀具和加工参数,可以得到较好的表面完整性;如果采用较小铣刀的磨钝标准可以避免出现回火马氏体.对淬硬钢进行精加工时,以铣代磨是完全可行的.  相似文献   

6.
切削加工表面变质层影响零件的物理力学性能,会引起表面残余应力分布、显微硬度和微观组织结构等表面完整性的改变,进而影响零件疲劳寿命等服役性能.利用MATLAB图像处理工具,对切削加工表面变质层进行图像识别,探讨预分析图像质量对变质层厚度分析结果的影响,判定切削表面变质层与基体的边界,测量加工表面变质层的厚度.对镍基高温合金GH4169、粉末高温合金FGH95高速切削加工表面变质层分别进行了图像识别和变质层厚度的确定.结果表明:采用图像处理方法能正确识别加工表面基体和变质层的相含量差别,得到加工表面变质层深度,可用于加工表面完整性的检测.研究同时表明:图像亮度、纹理度、对比度和清晰度均会对变质层厚度分析结果产生较大影响,而图像色彩饱和度和尺寸大小的差异对变质层厚度分析结果影响较小.  相似文献   

7.
为了减少刀具磨损、提高工件表面完整性,借助分子动力学仿真对金刚石纳米级切削单晶铜进行了深入研究,比较了干切和加水切削时的晶格变形、切削力和热耗散,探讨了水基切削液和断续切削对刀具磨损和表面质量的影响.结果表明:水分子能够有效将刀具表面和被切材料分隔开,但是由于刀尖处接触压力极高、水膜易被穿透致使刀尖与铜原子直接作用,因此黏着现象无法完全避免.加水切削有利于减小摩擦力并降低刀具表面热量,工件已加工表面完整性得到提高,而断续切削有利于水膜的保持并充分发挥其冷却润滑作用.  相似文献   

8.
用PCBN(polycrystalline cubic boron nitride)刀具以90°刀尖角车削7050-T7451铝合金圆棒,探讨了刀具主偏角对铝合金材料表面完整性、表层微观晶粒组织和残余应力的影响.实验结果表明:以60°主偏角加工时,铝合金材料表面的微观形貌最好,硬度值最大,且表面晶粒组织致密,颗粒大小均匀;当主偏角过大时,铝合金材料表面的塑性变形大,易出现大面积的撕裂现象,而主偏角过小,则易引起刀具振动,使积屑瘤脱落,铝合金材料表面易形成"鳞刺";主偏角为75°,85°时,后刀面与已加工试件表面间的摩擦加剧,表面散热条件变差,有轻微退火软化现象,导致铝合金材料表面硬度略有减小;随主偏角增大,已加工铝合金材料表面压应力减小,且减小趋势增大.  相似文献   

9.
为了满足钨合金零件的高精度和高完整性表面加工需求,实现钨合金磨削质量的控制和加工工艺的优化,通过分析砂轮磨粒种类和结合剂类型对砂轮磨损形式的关系,明确了超硬磨料砂轮在钨合金磨削加工中的优势.研究了磨粒粒度和磨削参数对钨合金磨削加工质量的影响规律,为制定合理的磨削工艺提供依据.通过磨削试验获得钨合金高精度和高完整性表面磨削加工工艺.研究结果表明,钨合金磨削过程中砂轮易磨损,超硬磨料砂轮更适合钨合金的磨削加工.金属结合剂金刚石砂轮在钨合金磨削加工的表面质量和加工精度方面表现出优越性.通过改进磨削参数,钨合金精密磨削后表面粗糙度可达18.9 nm,实现了镜面磨削效果.  相似文献   

10.
镍基高温合金高速铣削加工表面完整性   总被引:2,自引:0,他引:2  
采用高速铣削加工试验,研究切削速度对2种不同的镍基高温合金FGH95和Inconel718已加工表面完整性的影响规律,并观察高速铣削加工后的切屑形貌。试验结果表明:在较低切削速度范围内(800~2 000 m/min),切削速度对表面粗糙度的影响很小,两者表面粗糙度相差不大,但在较高的切削速度范围内(>2 000 m/min),FGH95的表面粗糙度要大于Inconel718的表面粗糙度。在相同切削条件下,Inconel718的加工硬化率和加工硬化层深度要明显比FGH95的大,并且Inconel718表面白层的厚度大于FGH95表面白层厚度。高速铣削加工FGH95和Inconel718切屑均出现明显的锯齿化现象,并且随着切削速度的提高,锯齿化程度不断加剧以至变为碎屑。  相似文献   

11.
小切深条件下磨削表面完整性变化机理   总被引:1,自引:0,他引:1  
磨削表面强化后的残余应力及表面层硬度的改变是评价零件加工表面完整性的重要指标,并对零件的疲劳强度、耐磨损性能等影响显著.针对工程中更为多见的小切深磨削工艺过程,基于45钢试件磨削加工试验,以磨削变质层的金相组织、厚度、表面硬度和残余应力为研究对象,重点讨论了小切深条件下磨削表面变质层组织特征与形成机理.结果表明:在小切深干磨削条件下,工件表层存在残余拉应力,应力值随磨削深度的增加或工件速度的增加而减小;工件表面变质层厚度随磨削深度的增加或工件速度的减小而增大.试验结果说明,在小切深干磨削条件下,合理确定磨削用量及砂轮特性参数等,可使工件表层产生强化作用.  相似文献   

12.
针对材料高速切削过程提出基于耦合欧拉-拉格朗日表述的有限元模型.该模型在消除网格畸变、无需网格再划分和应用分离准则的条件下,由材料塑性流动控制切削过程中切屑材料的分离行为,突破了拉格朗日方法中预设切屑材料沿直线轨迹分离的局限性.研究表明,该模型可用于材料振动切削过程的数值模拟研究.本文主要针对该过程中切削力、加工表面完整性、切屑形貌及其转变等行为进行模拟研究.  相似文献   

13.
精密干切削淬硬零件表面完整性试验分析   总被引:1,自引:0,他引:1  
试验分析了聚晶立方氮化硼(PCBN)刀具在锋利无润滑状态下精密车削硬度为HRC62轴承钢GCr15时,切削参数(切削深度、切削速度和进给量)对表面粗糙度、残余应力和表面变质层的影响规律.在选择的切削用量范围内,以零件表面完整性为目标函数,采用正交试验法对切削参数进行优选,并对优选参数进行验证试验.结果表明,淬硬零件在高精度数控机床上进行精密干切削加工,能获得优越的表面完整性,即优异的表面精度、深度约为0.1 mm的表面残余压应力、热损伤层完全消失的表面物理性能.  相似文献   

14.
激光切割狭缝技术的研究   总被引:1,自引:1,他引:0  
介绍了加工狭缝的主要工艺方法和YAG激光器特性,从理论和实验两个方面研究了激光切割工艺参数、辅助工艺参数等对切割缝宽和缝面质量的影响。优化加工参数,可在金属零件上加工出缝宽0.05mm的狭缝。  相似文献   

15.
基于五轴低速走丝电火花线切割机床与回转机构相结合的加工方法,制备了后刀面具有微织构的螺旋微铣刀.建立了微织构螺旋微铣刀微刃单元的切削力理论模型,并开展微织构微铣刀与常规微铣刀的对比实验研究.结果表明:微织构螺旋微铣刀的切削力相对于常规刀具降低了30%~40%,相同加工条件下,微织构螺旋微铣刀所加工的表面粗糙度降低至0.745μm,而常规微铣刀所加工的表面粗糙度为1.130μm.  相似文献   

16.
为了深入探讨塑性铣削单晶硅的切削机理,对单晶硅进行了微细铣削实验研究.结果表明,合理地设定铣削参数与保证特定的铣削环境都很重要,在这个前提下,可以实现塑性切削,在单晶硅上获得具有完整几何外形的特征,同时表面质量可以达到单纳米级别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号