首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
胶束法制备SiO2超细粉   总被引:1,自引:0,他引:1  
高纯超细SiO2广泛用于集成电路的基板,密封剂的填料,高档漆的消光剂,透明橡胶的填料,催化剂及催化剂载体,以及高科技中的光学玻璃,绝热绝缘材料等[1~3].目前报道的制备超细SiO2粉末多用气相法,正硅酸四乙酯水解法等[4],以试剂硅酸钠为原料用沉淀...  相似文献   

2.
纳米SiO2粉末的共沸蒸馏法制备及机理   总被引:12,自引:0,他引:12  
采用正丁醇共沸蒸馏法制备了粒径为20-40nm的无团聚SiO2粉末。运用TEM,FTIR,TG-DTA和搂气物理吸附等实验手段研究了共沸蒸馏和直接干燥对粉末性能的影响,并对粉末的基本性能进行了测试和表征。结果表明,正丁醇共沸蒸馏嗵有效脱除SiO2凝胶中的水,防止干燥过程中颗 粒间硬团聚的形成,其作用机理是正丁醇取代凝胶中的水并发生丁氧基取代SiO2颗粒表面的部分羟基,从而降低了干燥时的毛细管力,消除了颗粒间的氢键桥接,阻止了颗粒间化学键的形成。  相似文献   

3.
快速制备纳米SiO2的研究   总被引:6,自引:0,他引:6  
采用溶胶-凝胶技术,利用正硅酸乙酯的水解和缩合反应,用NH4Cl作为阳离子表面活性剂,在短时间内制备了纳米SiO2粉末。研究了pH值、水与正硅酸乙酯的体积比、溶胶凝胶温度和焙烧温度对纳米二氧化硅制备时间及其粒径的影响,并用粒度分析仪对SiO2粉体颗粒进行了表征。结果表明,采用此方法制得的SiO2粉体颗粒平均粒径为67.5nm,较理想的反应条件为水与正硅酸乙酯的体积比为10,反应温度为60℃。  相似文献   

4.
微乳液法合成纳米二氧化硅粒子   总被引:9,自引:0,他引:9  
制备Triton X—100/正辛醇/环己烷/水(或氨水)微乳液,研究了该微乳液系统稳定相行为与制备条件的关系.在该微乳液系统稳定的条件下,由正硅酸乙酯受控水解反应制各SiO2纳米粒子,反应后处理简便,制得粒子尺度较均一的球形疏松无定型纳米SiO2粒子.SiO2粒子粒径尺寸可通过调节水与表面活度剂分子数之比m、水与正硅酸乙酯分子数之比n控制.探讨了影响SiO2纳米粒子形貌、粒径分布的因素及制备优化条件.  相似文献   

5.
采用真空高温反应,自然降温冷却的合成方法,成功地在Li2S-SiO2体系中制备出了玻璃。对玻璃样品进行了X-射线衍射分析(XRD)、扫描电镜(SEM)及电子探针微区分析,确定了玻璃形成范围,借助X-射线光电子能谱(XPS)进行了玻璃中硫元素的化学环境(原子价态)分析;用差热分析(DTA)技术测定了玻璃的转变温度。  相似文献   

6.
采用溶胶-凝胶法以正硅酸乙酯为硅源、以Fe_3O_4纳米粒子为核的磁响应性介孔二氧化硅纳米粒子(MMSNs),通过修饰羧基、利用羧基和壳聚糖的作用,制备壳聚糖(CS)包覆的磁性介孔二氧化硅纳米粒子(MMSNs/CS).通过红外光谱(FT-IR)、热重分析(TGA)、透射电子显微镜(TEM)、X射线衍射(XRD)表征微球的结构和性质.结果显示壳聚糖包覆在了磁性介孔二氧化硅的表面,介孔二氧化硅的厚度为30nm,壳聚糖的厚度为10nm,且得到的产物具有良好的磁响应性.  相似文献   

7.
综述了纳米SiO2粉体的各种制备方法和工艺特点;阐明了当前人们对纳米SiO2制备所追求的目标及面临着的问题。  相似文献   

8.
采用反相微乳液法制备了负载2种吡啶盐染料的二氧化硅荧光纳米粒子.制备出的纳米粒子呈单分散球形,平均粒径为30 am.通过研究其在氯仿、乙醇、N,N一二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)和水中的紫外及荧光性质,发现吡啶盐染料负载于二氧化硅纳米粒子后,克服了吡啶盐的荧光最大发射波长随着溶剂极性而变化的现象,有效地抑制了吡啶盐在高浓度下的浓度淬灭效应,并提高了材料的抗光漂白性能.在254 am激发光照射25 h后,荧光纳米粒子分散液在460 nm处的吸光度是原来的68%,而染料溶液只有原来的11%.研究表明,这类纳米粒子作为一种新型的荧光纳米探针可用作高灵敏度的生物检测及细胞成像.  相似文献   

9.
以硅酸钠为原料,采用聚乙二醇为表面修饰剂及聚丙烯酸钠为分散剂,通过CO2沉淀法制备了水溶性纳米SiO2.通过透射电子显微镜(TEM)、X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FT-IR)对水溶性纳米SiO2粒子进行表征;利用四球机考察了水溶性纳米SiO2粒子及其同辛丁基二硫代磷酸双β羟乙基十八胺盐(简称DDPN)...  相似文献   

10.
实验用氨水作沉淀剂,与氯氧化锆在常温条件下进行液相沉淀反应,制备纳米二氧化锆.实验优化出制备纳米二氧化锆的最佳工艺条件:反应物氨水和氯氧化锆的摩尔比为2:1;分散剂浓度为2g/L;焙烧温度为750℃;氨水浓度0.2mol/L;氯氧化锆浓度0.1mol/L,在此条件下可获得较为分散均匀的纳米二氧化锆.  相似文献   

11.
纳米二氧化硅粒子在水性聚氨酯中分散性的研究   总被引:1,自引:0,他引:1  
采用六甲基二硅胺烷(HMDS)对气相二氧化硅和硅溶胶中两种纳米二氧化硅(SiO2)粒子表面进行了化学接枝改性,然后将改性后的纳米SiO2粒子加入到水性聚氨酯(WPU)中,制备了一系列不同纳米SiO2粒子含量的共混改性WPU样品.通过FT-IR,SEM对纳米SiO2粒子共混改性WPU成膜物的织态结构进行了表征,并研究了SiO2/WPU共混乳液的成膜过程对成膜物织态结构的影响.结果表明,纳米SiO2粒子表面改性状态很大程度上决定了纳米SiO2粒子在共混成膜物中的分散状态和织态结构,具有一定表面两亲性的纳米Si  相似文献   

12.
固体乙醇合成工艺实验方案比较   总被引:2,自引:0,他引:2  
从几种固体酒精生产方案中,经过实验对比,筛选出QHSJ3改进工艺方案,实验显示出最佳效果。  相似文献   

13.
机械化学法合成纳米氧化锌研究   总被引:1,自引:0,他引:1  
采用机械化学法合成了纳米ZnO粉体,利用DTS,XRD,FT IR,TEM等检测手段对纳米ZnO粉体进行表征;结果表明:经过PAA-NH4分散处理的ZnO粉体的分散性良好,粒径分布范围窄,在60~80 nm范围之间;XRD分析确认本实验所得粉体为纤锌矿结构的六方相ZnO,其纯度高,结晶度好.  相似文献   

14.
按照Janus粒子制备原理,以本体相非对称化、表面非对称性修饰及非对称性混合法对两半具有截然不同性质的粒子——Janus粒子的制备研究进行了综述,并对文献中所涉及的制备方法和相应方法的局限性进行了讨论.这种分类使多样化制备方法有更明确的本质定位和丰富的包容性.同时对材料功能需求及Janus粒子满足功能需求的制备方法改进等进行了展望.  相似文献   

15.
16.
在乙醇—水体系中,用硬脂酸作为表面修饰剂,用一步合成法制备了具有硬脂酸修饰的纳米BaSO4.用傅立叶红外(FT-IR),粉末X衍射(XRD),动态光散射(DLS),透射电镜(TEM),热重分析(TGA)等测试方法对所制得的纳米BaSO4进行了表征,结果表明,在加入一定量的硬脂酸和少量的氨水的条件下,能得到分散性好,平均粒径为16nm的具有硬脂酸修饰的球形BaSO4.  相似文献   

17.
采用悬浮聚合法制备中空聚苯乙烯粒子,分析SDBS浓度,DVB与St的配比及St的用量对聚苯乙烯粒子粒径的影响.透射电镜照片显示,制备的粒子为多孔结构,且孔的平均直径约为1.5 μm.聚苯乙烯粒子的粒径随着SDBS的浓度和St用量的增加而增大,随着DVB与St的配比的增大而减小.经过优化后的制备条件是SDBS浓度、DVB与St的配比及St的用量分别为0.012%,1和2.6 g.  相似文献   

18.
利用恒电位法、循环伏安法和双电位阶跃法在聚苯胺修饰Pt电极上沉积Pt微粒,并用其制备了甲醇阳极氧化的催化电极.研究结果表明,此种电极对甲醇氧化具有很好的电催化活性,并有协同催化作用.对不同Pt微粒电化学沉积方式所得电极的电催化活性进行了比较.在其它条件都相同的情况下,恒电位法沉积Pt微粒所得复合电极的电催化活性最好,双电位阶跃法沉积Pt微粒所得复合电极的电催化活性最差.同时,沉积方式相同时,不同沉积条件对所得复合电极的电催化活性有一定影响.在所研究的范围内,恒电位-0.25 V,循环电位-0.25~0.65 V以及双电位阶跃在-0.25 V持续时间为100 s时所得电极的催化活性优于其它条件下所得复合电极的电催化活性.  相似文献   

19.
合成了NiFe2O4-SiO2纳米复合微粒,借助傅立叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD)、透射电子显微镜(TEM)等分析手段对样品的成分、结构及形貌进行了表征,利用振动样品磁场计(VSM)测定了磁核及其复合微粒的磁学性能,并在pH=6的条件下测定了样品对溴代十六烷基吡啶的饱和吸附量.结果表明:合成的纳米复合微粒分布均匀,具有磁性和吸附性能,在磁靶向治疗中具有潜在的应用价值.  相似文献   

20.
添加剂对锰锌铁氧体纳米晶水热制备的影响   总被引:1,自引:1,他引:0  
均匀的共沉淀前驱体是通过水热法制备单相锰锌铁氧体的前提.通过加入添加剂,制备了无杂相、团聚程度低、结晶度完好、粒度分布窄、粒径为10~20nm的单相以及具有较好磁性能的锰锌铁氧体纳米晶.此外,对产物进行了热稳定性研究,结果表明其具有良好的烧结活性,烧结温度在空气中为870℃,在氩气中为1150℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号