共查询到19条相似文献,搜索用时 78 毫秒
1.
非瞬时脉冲所描述的突变会持续停留在一个有限的时间间隔内,这种现象在临床医学、生物工程、化学和物理等领域都普遍存在。为了能够更深刻、更精确地反映事物的变化规律,研究了一类具有非瞬时脉冲的分数阶微分方程边值问题解的存在性与唯一性。首先,通过建立与边值问题等价的积分方程,定义了算子,并证明了其全连续性;然后,运用Schauder不动点定理得到了边值问题解存在的充分条件;最后利用压缩映射原理得到解的唯一性定理。 相似文献
2.
为考察一类α∈(3,4]阶微分方程边值问题{Dα0+u(t)+f(t,u(t),u′(t))=0 u(0)=0,u′(0)=0 u″(1)=0,u(1)=g(u(1)) 解的存在性问题,运用Schauder不动点定理,得到了该问题一个解的存在性结果. 相似文献
3.
研究了一类分数阶微分方程边值问题。 应用Green函数,将分数阶微分方程边值问题转化为等价的积分方程, 利用Schaefer不动点定理和Leray Schauder不动点定理得到了该边值问题存在解的充分条件, 推广和完善了已有的结果。 相似文献
4.
研究一类具有分数阶积分条件的分数阶微分方程边值问题,其非线性项包含Caputo型分数阶导数.将该问题转化为等价的积分方程,利用Leray-Schauder非线性抉择原理结合一个范数形式的新不等式,获得一定增长性条件下存在解的充分条件,推广和改进已有的结果,并给出应用实例. 相似文献
5.
分数阶微分方程积分边值问题正解的存在性 总被引:2,自引:0,他引:2
利用锥上不动点定理,研究一类分数阶微分方程积分边值问题正解的存在性,得到了边值问题至少存在一个正解的充分条件,并给出了应用实例. 相似文献
6.
利用Leray-Schauder抉择定理研究了一类非线性分数阶微分方程边值问题解的存在性. 相似文献
7.
研究了一类带p-Laplace算子的分数阶微分方程非局部边值问题。利用Schauder不动点定理,得到了边值问题解的存在性结论。 相似文献
8.
研究了以下一类拟线性分数阶高阶脉冲微分方程边值问题{Dq0+y(t)=A(t,y)y(t)+f(t,y(t),Φy(t),Ψy(t)),■t∈[0,1],q∈(n-1,n],y(i)(0)=0,Δy(i)|t=tk=0,1≤i≤n-2,k=1,2,…,p,Δy|t=tk=Ik(y(t k)),Δy(n-1)|t=tk=Jk(y(tk)),k=1,2,…,p,y(0)=y0+g(y),y(n-1)(1)=y1+∑m-2j=1bjy(n-1)(ξj)解的存在性。通过定义一个压缩映射并利用Banach不动点定理和Krasnoselskii's不动点定理,得到了边值问题存在唯一解和至少存在一个解的充分条件,最后分别给出一个例子来验证主要结果。 相似文献
9.
主要对一类带有双积分边界条件的分数阶微分方程进行分析和研究。首先应用分数阶微积分的相关性质给出此类方程的等价方程。然后通过构建Green函数,在Banach空间中给出算子T的定义,将此等价方程的求解问题转换为T在Banach空间中的不动点问题。再由Green函数的有关特性分析算子T,在不同的条件下,分别利用Banach压缩映像原理和Krasnoselskii不动点定理,得到算子T不动点的存在唯一性和存在性,即原边值问题解的存在唯一性和存在性。最后给出一个例子来说明所得结果的应用性。 相似文献
10.
讨论了非线性分数阶微分方程的两点边值问题,其中的导数是Caputo型分数阶导数,非线性项是Carathéodory函数,应用Darbo不动点定理,证明其在L(0,1)中存在解. 相似文献
11.
研究了一类具有逐项分数阶导数的微分方程积分边值问题正解的存在性和多解性.利用锥上不动点定理和Leggett-Williams不动点定理,分别得到了该积分边值问题至少存在1个正解和3个正解的结论.最后给出2个例子来证明结论有效. 相似文献
12.
分数阶微分方程边值问题是从大量自然科学和工程技术问题中抽象出来的,在诸如流体力学、材料力学、天文学、经济学、生物学和医学等学科中有着广泛的应用,但目前关于分数阶微分方程多点边值问题的研究还不多见,文章研究了一类分数阶积分微分方程三点边值问题。在一定条件下,利用压缩映像原理及Krasnoselskii不动点定理,得到了分数阶微分方程积分边值问题解的存在性及唯一性。 相似文献
13.
利用Schauder不动点定理和压缩映像原理,讨论了一类分数阶微分方程的多点边值问题,得出边值问题的解的存在性和唯一性结果,并举例对结论进行验证. 相似文献
14.
利用基本的不动点定理研究一类带有反周期非线性分数阶q-差分方程边值问题,得到了边值问题解的存在与唯一的充分条件,并通过具体方程验证了所得结论. 相似文献
15.
研究一类含积分边界条件非线性分数阶微分方程{~CD~αu(t)+f(t,u(t))=0,2α3,0t1, u(0)=u″(0)=0,u(1)=λ∫10u(s)ds,0λ2,解的存在性和唯一性,借助于Green函数的性质,利用Schauder不动点定理和Banach压缩映射原理,得到该边值问题解的存在性和唯一性定理,并举例验证所得结论的有效性. 相似文献
16.
针对分数阶脉冲微分方程解的存在性研究,提出一类带积分边值条件的分数阶脉冲微分方程边值问题;通过上下解方法,利用Schauder不动点定理得到此边值问题解的存在性结果;最后给出了一个例子来说明所得结果的应用性. 相似文献
17.
18.
尚淑彦 《吉林大学学报(理学版)》2021,59(6):1310-1316
考虑无穷多点边界条件下的一类Riemann-Liouville分数阶边值共振问题的可解性. 首先, 利用锥拉伸与压缩不动点定理, 在非线性项f满足一定的条件下, 得到了问题正解的存在性;其次, 在非线性项f满足更强的条件下, 利用Leggett-Williams不动点定理得到了3个正解的结果. 相似文献
19.
利用Leggett-Williams不动点定理和锥上不动点定理,研究一类具有分数线性微分算子的分数阶微分方程边值问题,得到了该边值问题至少1个正解和至少3个正解的存在性定理. 相似文献