首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究45钢经高温、亚温(临界间)和珠光体区锻热淬火工艺及其强韧化机理,测定其硬度、拉伸性能、冲击功和断裂韧性,并与常规的锻造后再淬火回火处理的45钢加以比较。试验结果表明,与常规处理相比,锻热淬火处理工艺使45钢的硬度有明显提高。锻热形变处理后45钢的冲击功和断裂韧性均比常规处理后的高,冲击功值提高了77-99%,断裂韧性值提高了35-47%。拉伸结果也表明,45钢经锻热形变热处理后的拉伸强度也均比常规处理后的高,而亚温锻热淬火比高温锻热淬火高。研究结果指出,锻热淬火有效地利用了形变强化和相变强化的结合,是提高钢强韧性的有效方法之一。  相似文献   

2.
35CrMo钢亚温淬火后的低温拉伸和冲击性能   总被引:2,自引:0,他引:2  
本文通过对35CrMo钢采用在(A+F)两相区内进行亚温加热淬火并高温回火以及常规调质处理后的室温~-196℃光滑和缺口拉伸、系列冲击试验,探索了亚温淬火对改善35CrMo钢低温强韧性的可能性.试验结果表明:35CrMo钢亚温淬火后,可使奥氏体晶粒得到显著细化(达到12级晶粒度);与常规调质处理相比,在低温下光滑拉伸强度稍有提高,而塑性稍有降低.但确显著提高低温下的缺口拉伸强度,降低缺口敏感性.同时还显著提高脆性转化温度附近的冲击韧性,但在其它温区提高不甚明显.冷脆转化温度约降低20℃;亚温淬火后低温下拉伸断裂的基本特征是裂纹均在碳化物和铁素体的边界处萌生,并以穿晶扩展为主.在液氮温度下,也不出现脆性的解理断裂,而是以准解理为主并有少量韧窝的混合型断裂;较佳的亚温淬火工艺是原始为淬火态,采用820℃加热淬火(未溶铁素体约13%左右)和550℃高温回火.  相似文献   

3.
对25MnV钢进行了常规淬火,亚温淬火及常规淬火+深冷处理工艺研究。试验结果表明,与常规淬火工艺相比,采用亚温淬火、常规淬火+深冷处理两种工艺后,在保持硬度(强度)基本不变的前提下,冲击韧性和耐磨性均具有显著提高,而深冷处理具有工艺简单、成本低廉的特点,因此可以作为结构钢的一种强韧化工艺。  相似文献   

4.
40Cr钢亚温淬火强韧化机理的试验研究   总被引:3,自引:0,他引:3  
研究40Cr钢亚温淬火热处理的强韧化机理,并与40Cr钢常规热处理后的机械性能进行比较。结果表明,亚温淬火热处理提高40Cr钢的冲击韧性,降低40Cr钢的韧脆转变温度。抑制40Cr钢的回火脆性。  相似文献   

5.
本文研究亚温淬火低温回火后强韧化效果,并与完全淬火低温回火态相对比.试验结果表明:20MnVB钢经亚温淬火低温回火处理,在不牺牲强度同时,显著地提高韧性.本文分析了强韧化机理.认为低碳(合金)钢进行亚温淬火低温回火处理是一种具有实用意义的强韧化工艺.并推荐了最佳热处理工艺规范.  相似文献   

6.
45钢是我国目前用量较大的调质钢,通过研究45钢经调质和亚温淬火热处理后的硬度,冲击韧度和金相组织,来寻求合适的45钢热处理工艺.结果表明,45钢仅采用调质处理,不能满足高硬度高韧性的技术要求,采用亚温淬火热处理配合可解决上述问题,得到最优的综合力学性能,考虑经济性时可直接采用770℃淬火500℃回火的热处理工艺.在保证45钢强度和硬度的同时,要提高韧性的最理想的热处理工艺为840℃淬火550℃回火+770℃淬火500℃回火.  相似文献   

7.
研究采用多步低温等温贝氏体转变工艺处理后60CrNiMo钢组织与力学性能,用金相显微镜、扫描电镜及透射电镜观察60CrNiMo钢相组织,并进行硬度、拉伸和冲击等力学性能测试。结果表明,经淬火+亚温淬火+高温回火处理的60CrNiMo钢可得到细小均匀的二次回火马氏体+铁素体混合组织,其力学性能得到改善;采用三步低温等温贝氏体转变工艺可有效减少材料块状残余奥氏体和细化贝氏体晶粒,从而提高60CrNiMo钢力学性能。  相似文献   

8.
在固定除淬火加热温度以外其它各热处理工艺参数的条件下,通过对40Cr钢不同温度亚温淬火的强度、硬度和冲击韧性的研究,确定了40Cr钢在先共析铁素体向奥氏体转变终了温度以下10℃范围内进行亚温淬火,其强度和韧性达到了最佳配合。通过亚温淬火与生产中常用的完全淬火强韧化效果比较,得出40Cr钢亚温淬火后强韧性不低于完全淬火,且在满足使用性能要求的前提下显著降低了淬火加热温度,减少了能源消耗。  相似文献   

9.
研究40Cr钢亚温淬火热处理的强韧化机理,并与40Cr钢常规热处理后的机械性能进行比较。结果表明,亚温淬火热处理提高40Cr钢的冲击韧性,降低40Cr钢的韧脆转变温度,抑制40Cr钢的回火脆性。  相似文献   

10.
本文是在多次试验的基础上,分析了 GCr15钢锻热淬火时产生裂纹的原因,并找出了如何防止裂纹,获得适合于切削加工的硬度和显著细化钢中炭化物的工艺方法.本文还提出了 GCr15钢锻热淬火和高温回火的正交试验方案和分析方法.并分析和提出了 GCr15钢的高温形变热处理的最优工艺参数和影响这种新工艺的主次要因素等。  相似文献   

11.
对65Mn钢进行了深冷处理和磁场深度处理。力学性能实验表明,经深冷处理后无论低温回火态还是中温回火态综合力学性能均明显优于常规淬火回火态。磁场深冷处理对65Mn钢力学性能的有益作用远超过一般深冷处理。在硬度.强度提高的同时,冲击韧性明显改善,耐磨性大幅度提高,具有显著强韧化作用。磁场深冷处理作为中小型零件强韧化工艺可以在生产中应用推广。  相似文献   

12.
等温淬火对GCr15钢力学性能的影响   总被引:1,自引:0,他引:1  
研究了等温淬火对GCr15钢力学性能的影响,结果表明,GCr15钢经不同温度及时间的等温淬火后,其抗拉强度及冲击韧性明显提高。特别是经850℃奥氏体化后,在240℃等温15-60min,可获得强韧配合的最佳值,且其基体硬度仍能保持在57.4-61HRC,有效地提高了GCr15钢的综合力学性能。  相似文献   

13.
本文作者通过淬火回火硬度试验,室温和高温拉伸冲击试验以及金相和电镜组织观察,研究了V,Mo,Ni,Nb,Co和B等合金元素对热作模具钢组织和性能的影响.结果表明:适宜的合金元素含量对钢的室温和高温强韧性产生很好的作用,所得结果对于热作模具钢新钢种开发有重要参考价值.  相似文献   

14.
55SiMnVB钢经遗传工艺(高温形变火淬-软化回火-二次淬火+中温回火)处理后,与常规热处理相比,抗拉强度提高20%,断面收缩率提高20~30%。经预应力喷丸后的单片疲劳寿命普遍接近一百万次,该钢具有明显的遗传强化效果。经初步探讨,认为经遗传工艺处理的55SiMnVB钢具有一定的遗传强化效果的原因是由于形变诱发碳化物析出,Ms点升高,板条马氏体增多并细化,形变诱发析出较为稳定的弥散分布的碳化物,对于形变造成的大量位错起钉扎作用形成较为稳定的位错网络。  相似文献   

15.
本文研究了42CrMo、45CrMnMo二种钢亚温淬火时,亚温淬火温度与未溶铁素体和先共析铁素体量及硬度的关系,测定了铁素体含量对接触疲劳寿命的影响.试验发现,亚温淬火含有铁素体时,接触疲劳寿命比不含铁素体的完全淬火的要好,随铁素体含量增加,接触疲劳性能不断提高,对于42CrMo钢,铁素体含量达到约10%,45CrMnMo达到约8%时,接触疲劳性能为最佳.  相似文献   

16.
研究了不同前处理组织的亚温淬火对35CrNiMoA钢组织和性能的影响。试验表明:亚温淬火前,予处理组织为退火或正火态时,铁素体呈块状分布;予处理组织为淬火或调质态时,铁素体呈条状分布。对上术组织的机械性能和断裂行为作了测定,并在等强度或等冲击韧性(α_k)条件下与常规调质处理进行比较。得出:亚温处理的强韧化效果不仅取决于铁素体的量,而且主要取决于它的分布形态。经亚温淬火后,铁素体呈条状分布并且控制它的量在10%左右时,能获得最佳的强韧化效果。  相似文献   

17.
作者采用透射电镜、扫描电镜和X射线衍射仪等实验设备,研究了55SiMnVB钢在遗传强化处理过程中,中间软化回火对钢中显微组织、位错密度和力学性能的影响。结果表明,高温形变强化效果在相变再结晶过程中的遗传,实际是位错结构与位错密度的遗传;中间软化回火,不仅降低了钢的硬度而便于加工,而且继承了高温形变所产生的位错结构并使其稳定,使高温形变亚结构能够遗传给次生马氏体,从而获得比常规热处理稍高的强度。  相似文献   

18.
采用欠速淬火工艺对再用轨进行全长热处理,对经过热处理后的再用轨和普通再用轨的力学性能如冲击韧性、断裂韧性、疲劳强度、残余应力、硬度及金相组织等进行了对比实验,结果表明,经过欠速淬火后,再用轨的强韧性和塑性有明显提高,并结合铺设实验,探讨了欠速淬火提高钢轨强韧性能的原因以及它与使用性能的关系.  相似文献   

19.
本文研究了机械工程常用的几种结构钢经不同热处理后在常温和低温下的断裂韧性K_(IC)或K_(IR),以及这些材料在不同温度下的断裂机制。结果表明,45Cr钢淬火550℃回火后,常温和低温K_(IC)值较20Cr钢淬火200℃回火的高,但45Cr钢淬火390℃回火后的断裂韧性不如20Cr钢淬火200℃回火的。20Cr钢经临界区处理后,低温断裂韧性优于普通淬火的。42CrMo钢从过热温度淬火后,断裂韧性差。断裂机制和K_(IC)值都随试验温度而变化。奥氏体晶粒大小和马氏体板条束尺寸显著影响低温断裂韧性,临界区淬火后马氏体板条束尺寸较小,因而低温断裂韧性高。  相似文献   

20.
采用力学性能测试、金相组织观察、透射电镜以及扫描电镜观察,研究奥氏体化工艺对超深井用V150油套管强韧性的影响。研究结果表明:较高的奥氏体化温度可提高合金元素在奥氏体中的溶解度,但过高的奥氏体化温度会使奥氏体晶粒粗大,导致塑性、韧性下降,890℃为实验钢较优的常规奥氏体化温度;奥氏体化30 min后,实验钢成分和组织分布趋于均匀,油套管的强韧性指标匹配达到最好,保温时间超过45 min后,晶粒开始长大,导致冲击性能有所下降;亚温淬火形成铁素体和贝氏体、马氏体、残余奥氏体的混合组织,可得到超高强度钢希望获得的B/M复相组织,B/M组织中贝氏体能够分割马氏体基体,阻止裂纹扩展,残余奥氏体膜分割马氏体板条,使实验钢在保持足够强度的同时得到很高的韧性;实验钢在800℃亚温淬火后于640℃回火,强度和韧度均到达了V150油套管的目标要求,能够满足条件苛刻的超深井作业需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号