共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
LE BOUVIER GL 《Nature》1954,174(4431):649-650
3.
4.
5.
6.
7.
Structure of Rauscher mouse leukaemia virus RNA 总被引:14,自引:0,他引:14
8.
9.
Structure of the glycoprotein gene in rabies virus 总被引:41,自引:0,他引:41
10.
11.
Envelope glycoproteins of human and simian immunodeficiency virus (HIV and SIV) undergo a series of conformational changes when they interact with receptor (CD4) and co-receptor on the surface of a potential host cell, leading ultimately to fusion of viral and cellular membranes. Structures of fragments of gp120 and gp41 from the envelope protein are known, in conformations corresponding to their post-attachment and postfusion states, respectively. We report the crystal structure, at 4 A resolution, of a fully glycosylated SIV gp120 core, in a conformation representing its prefusion state, before interaction with CD4. Parts of the protein have a markedly different organization than they do in the CD4-bound state. Comparison of the unliganded and CD4-bound structures leads to a model for events that accompany receptor engagement of an envelope glycoprotein trimer. The two conformations of gp120 also present distinct antigenic surfaces. We identify the binding site for a compound that inhibits viral entry. 相似文献
12.
Dengue virus enters a host cell when the viral envelope glycoprotein, E, binds to a receptor and responds by conformational rearrangement to the reduced pH of an endosome. The conformational change induces fusion of viral and host-cell membranes. A three-dimensional structure of the soluble E ectodomain (sE) in its trimeric, postfusion state reveals striking differences from the dimeric, prefusion form. The elongated trimer bears three 'fusion loops' at one end, to insert into the host-cell membrane. Their structure allows us to model directly how these fusion loops interact with a lipid bilayer. The protein folds back on itself, directing its carboxy terminus towards the fusion loops. We propose a fusion mechanism driven by essentially irreversible conformational changes in E and facilitated by fusion-loop insertion into the outer bilayer leaflet. Specific features of the folded-back structure suggest strategies for inhibiting flavivirus entry. 相似文献
13.
14.
15.
The integral membrane protein M2 of influenza virus forms pH-gated proton channels in the viral lipid envelope. The low pH of an endosome activates the M2 channel before haemagglutinin-mediated fusion. Conductance of protons acidifies the viral interior and thereby facilitates dissociation of the matrix protein from the viral nucleoproteins--a required process for unpacking of the viral genome. In addition to its role in release of viral nucleoproteins, M2 in the trans-Golgi network (TGN) membrane prevents premature conformational rearrangement of newly synthesized haemagglutinin during transport to the cell surface by equilibrating the pH of the TGN with that of the host cell cytoplasm. Inhibiting the proton conductance of M2 using the anti-viral drug amantadine or rimantadine inhibits viral replication. Here we present the structure of the tetrameric M2 channel in complex with rimantadine, determined by NMR. In the closed state, four tightly packed transmembrane helices define a narrow channel, in which a 'tryptophan gate' is locked by intermolecular interactions with aspartic acid. A carboxy-terminal, amphipathic helix oriented nearly perpendicular to the transmembrane helix forms an inward-facing base. Lowering the pH destabilizes the transmembrane helical packing and unlocks the gate, admitting water to conduct protons, whereas the C-terminal base remains intact, preventing dissociation of the tetramer. Rimantadine binds at four equivalent sites near the gate on the lipid-facing side of the channel and stabilizes the closed conformation of the pore. Drug-resistance mutations are predicted to counter the effect of drug binding by either increasing the hydrophilicity of the pore or weakening helix-helix packing, thus facilitating channel opening. 相似文献
16.
Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid 总被引:101,自引:0,他引:101
The three-dimensional structures of influenza virus haemagglutinins complexed with cell receptor analogues show sialic acids bound to a pocket of conserved amino acids surrounded by antibody-binding sites. Sialic acid fills the conserved pocket, demonstrating that it is the influenza virus receptor. The proximity of the antibody-binding sites suggests that antibodies neutralize virus infectivity by preventing virus-to-cell binding. The structures suggest approaches to the design of anti-viral drugs that could block attachment of viruses to cells. 相似文献
17.
Structure of a human common cold virus and functional relationship to other picornaviruses 总被引:29,自引:0,他引:29
M G Rossmann E Arnold J W Erickson E A Frankenberger J P Griffith H J Hecht J E Johnson G Kamer M Luo A G Mosser 《Nature》1985,317(6033):145-153
We report the first atomic resolution structure of an animal virus, human rhinovirus 14. It is strikingly similar to known icosahedral plant RNA viruses. Four neutralizing immunogenic regions have been identified. These, and corresponding antigenic sequences of polio and foot-and-mouth disease viruses, reside on external protrusions. A large cleft on each icosahedral face is probably the host cell receptor binding site. 相似文献
18.
Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor 总被引:1,自引:0,他引:1
Ebola virus (EBOV) entry requires the surface glycoprotein (GP) to initiate attachment and fusion of viral and host membranes. Here we report the crystal structure of EBOV GP in its trimeric, pre-fusion conformation (GP1+GP2) bound to a neutralizing antibody, KZ52, derived from a human survivor of the 1995 Kikwit outbreak. Three GP1 viral attachment subunits assemble to form a chalice, cradled by the GP2 fusion subunits, while a novel glycan cap and projected mucin-like domain restrict access to the conserved receptor-binding site sequestered in the chalice bowl. The glycocalyx surrounding GP is likely central to immune evasion and may explain why survivors have insignificant neutralizing antibody titres. KZ52 recognizes a protein epitope at the chalice base where it clamps several regions of the pre-fusion GP2 to the amino terminus of GP1. This structure provides a template for unravelling the mechanism of EBOV GP-mediated fusion and for future immunotherapeutic development. 相似文献
19.
Enveloped viruses have evolved complex glycoprotein machinery that drives the fusion of viral and cellular membranes, permitting entry of the viral genome into the cell. For the paramyxoviruses, the fusion (F) protein catalyses this membrane merger and entry step, and it has been postulated that the F protein undergoes complex refolding during this process. Here we report the crystal structure of the parainfluenza virus 5 F protein in its prefusion conformation, stabilized by the addition of a carboxy-terminal trimerization domain. The structure of the F protein shows that there are profound conformational differences between the pre- and postfusion states, involving transformations in secondary and tertiary structure. The positions and structural transitions of key parts of the fusion machinery, including the hydrophobic fusion peptide and two helical heptad repeat regions, clarify the mechanism of membrane fusion mediated by the F protein. 相似文献
20.
Hepatitis C virus (HCV) is a human pathogen affecting nearly 3% of the world's population. Chronic infections can lead to cirrhosis and liver cancer. The RNA replication machine of HCV is a multi-subunit membrane-associated complex. The non-structural protein NS5A is an active component of HCV replicase, as well as a pivotal regulator of replication and a modulator of cellular processes ranging from innate immunity to dysregulated cell growth. NS5A is a large phosphoprotein (56-58 kDa) with an amphipathic alpha-helix at its amino terminus that promotes membrane association. After this helix region, NS5A is organized into three domains. The N-terminal domain (domain I) coordinates a single zinc atom per protein molecule. Mutations disrupting either the membrane anchor or zinc binding of NS5A are lethal for RNA replication. However, probing the role of NS5A in replication has been hampered by a lack of structural information about this multifunctional protein. Here we report the structure of NS5A domain I at 2.5-A resolution, which contains a novel fold, a new zinc-coordination motif and a disulphide bond. We use molecular surface analysis to suggest the location of protein-, RNA- and membrane-interaction sites. 相似文献