首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以羟丙基甲基纤维素(hydroxypmpylmethyl cellulose,HPMC)水凝胶作为模板合成了羟基磷灰石.利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)等检测手段对所得的产物进行了形貌与结构表征.结果表明:HPMC水凝胶模板可以诱导羟基磷灰石的形成;模板分子上的多羟基与磷灰石晶体有一定的相互作用,模板的疏水微区和凝胶网络结构为磷灰石的形成提供了微环境,也决定着磷灰石晶体的微观形貌.  相似文献   

2.
Highly ordered SnO2/Fe2O3 composite nanowire arrays have been synthesized by electrophoretic deposition method. The morphology and chemical composition of SnO2/Fe2O3 composite nanowire arrays are characterized by SEM, TEM, EDX, XPS, and XRD. The results show that the SnO2/Fe2O3 composite nanowires are about 180 nm in width and tens of microns in length, and they are composed of small nanoparticles of tetraganal SnO2 and rhombohedral α-Fe203 with diameters of 10-15nm. The SnO2/Fe2O3 composite nanowires are formed by a series of chemical reactions.  相似文献   

3.
利用沉淀聚合和原位共沉淀法制得四氧化三铁负载的聚(羟丙基纤维素丙烯酸酯-co-丙烯酸)(P(HPCA-co-AA)@Fe_3O_4)水凝胶.研究了羟基(—OH)与丙烯酰氯(AC)的摩尔比和反应时间对羟丙基纤维素(HPC)的乙酰基修饰度的影响,通过FT-IR、~1H-NMR等对产物进行了表征.以水杨酸钠为模型药物,研究了水凝胶在不同pH环境下对药物的可控释放行为.结果表明,水凝胶具有良好的pH响应性,在碱性环境下的溶胀行为使药物释放量明显大于酸性环境下.  相似文献   

4.
聚乙烯吡咯烷酮(PVP)分别与十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)组成混合模板,在CaCl2、Na2CO3体系中调控合成CaCO3晶体,考察结晶温度对CaCO3晶体的影响。采用电导率法确定混合模板中表面活性剂的使用浓度。通过扫描电镜(SEM)、傅里叶变换红外光谱仪(FT-IR)及X线衍射仪(XRD)对晶体的形貌和结构进行表征。结果表明:SDS与CTAB结合到PVP长链上的浓度分别为2.4和1.1 mmol/L。在PVP-CTAB模板中,5℃时为方解石的层状CaCO3聚集体,25℃时有部分球形球霰石出现,90℃时得到了棒状文石晶体。在PVP-SDS模板中,5和25℃时均为方解石型球状CaCO3聚集体,90℃时得到棒状文石晶体。  相似文献   

5.
Highly ordered porous alumina templates with a large-scale tunable interpore distance (100-445 nm) have been successfully fabricated under an electric field of 40-180 V by modifying oxalic acid solution with adequate alcohol. The results under our experimental conditions show that the phenomena of burning and breakdown during the high-field anodization process can be avoided by adding a proper amount of alcohol to the oxalic acid solution. An excellent linear relationship between interpore distance and anodization voltage is obtained under 40-170 V, and the maximum anodization voltage that could be used to avoid burning and breakdown is 180 V.  相似文献   

6.
Porous ceramics were prepared from kaolinite gangue and Al(OH)3 with double addition of MgCO3 and CaCO3 by the pore-forming in-situ technique. The characterizations of porous ceramics were investigated by X-ray diffractometry, scanning electron microscopy, and mercury porosimetry measurements, etc. It is found that although the decomposition of MgCO3 and CaCO3 has little contribution to the porosity, the double addition of MgCO3 and CaCO3 strongly affects the formation of liquid phase, and then changes the phase compositions, pore characterization, and strength. The appropriate mode is the sample containing 1.17wt% MgCO3 and 1.17wt% CaCO3, which has high apparent porosity (41.0%), high crushing strength (53.5 MPa), high mullite content (76wt%), and small average pore size (3.24 μm).  相似文献   

7.
A coordination complex was synthesized from NiCl2 and dipeptide glycylglycine(GG). It was characterized by element analysis, NMR and TG methods, and then was determined to be Ni(C4HsN2O3)2Cl2. Using an isoperibolic reaction calorimeter, the standard molar enthalpy of formation of Ni(GG)2Cl2(solid) has been determined to be -(1 674.66±2.02) kJ · mol^-1 at 298.15 K.  相似文献   

8.
Oxalic-acid-based co-precipitation method was employed to prepare LiNi2/3Mn1/3O2 sample with a high-ordered structure. Li+, Ni2+ and Mn2+ acetates were used as starting materials. The influence of the amount of lithium source in the starting materials on Li+ content, disorder of Li+-Ni2+ ions, and electrochemical performance has been investigated. Rietveld refinement shows that the sample prepared with 20% excess Li-source in the starting materials exhibits a perfect ordered structure. A specific discharge capacity is as high as 172 mAh/g at C/20 in the voltage range of 4.35–2.7 V. However, the cyclability is not satisfactory: about 25.3% fade in capacity was observed over 50 cycles. Chemically stable SiO2 was coated on the surface of LiNi2/3Mn1/3O2 particles. A significant improvement in cyclability was attained with 3 wt% SiO2 coating, which is ascribable to the protection of LiNi2/3Mn1/3O2 particles from being dissolved into the electrolyte.  相似文献   

9.
Amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were successfully fabricated by mechanical alloying. The microstructure, glass-forming ability, and crystallization behavior of amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The isothermal crystallization kinetics was analyzed by the Johnson–Mehl–Avrami equation. In the results, the supercooled liquid region of the amorphous alloy is as high as 81 K, as determined by non-isothermal DSC curves. The activation energy for crystallization is as high as 312.6 kJ·mol?1 obtained by Kissinger and Ozawa analyses. The values of Avrami exponent (n) imply that the crystallization is dominated by interface-controlled three-dimensional growth in the early stage and the end stage and by diffusion-controlled two- or three-dimensional growth in the middle stage. In addition, the amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were sintered under 2 GPa at temperatures of 673 K and 723 K. The results show that the Vickers hardness of the compacted powders is as high as Hv 1215.  相似文献   

10.
The pore structure of Cr2O3/Al2O3 catalysts and the surface chemical properties of these pores were characterized by positron lifetime and coincidence Doppler broadening (CDB) measurements. Four lifetime components could be resolved from the positron lifetime spectrum, with two long lifetime components and two short lifetime components. The two long lifetimes τ4 and τ3 are attributed to ortho-positronium (o-Ps) annihilation in large pores and microvoids, respectively. With increasing Cr2O3 content, both τ4 and its intensity I4 show sharp decrease, while τ3 and its intensity I3 keep nearly unchanged. The Doppler broadening S parameters also show sharp decrease with increasing Cr2O3 content. Detailed analysis of the CDB spectrum reveals that the parapositronium (p-Ps) intensity also decreases with increasing Cr2O3 content. This indicates that the change of o-Ps lifetime τ4 is due to the chemical quenching by Cr2O3 but not spin-conversion of positronium. The decrease of o-Ps intensity I4 indicates that Cr2O3 also inhibits positronium formation.  相似文献   

11.
We report an experimental route for synthesizing perovskite-structured strontium titanate (SrTiO3) nanocubes using an alkali hydrothermal process at low temperatures without further heating. Furthermore, we studied the influence of heating time (at 180℃) on the crystallinity, morphology, and perovskite phase formation of SrTiO3. The SrTiO3 powder, which is formed via nanocube agglomeration, transforms into cubic particles with a particle size of 120–150 nm after 6 h of hydrothermal sintering. The crystallinity and percentage of the perovskite phase in the product increased with heating time. The cubic particles contained 31.24at% anatase TiO2 that originated from the precursor. By varying the weight ratio of anatase TiO2 used to react with the strontium salt precursor, we reduced the anatase-TiO2 content to 18.8at%. However, the average particle size increased when the anatase-TiO2 content decreased.  相似文献   

12.
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder (34.85 A·m2·kg–1) was markedly lower than that of the Fe3O4 powder (79.55 A·m2·kg–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.  相似文献   

13.
Electrochemical capacitors store the capacitance through faradic reaction, which is generally named psue-docapacitance or supercapacitance. They are currently extensively studied as novel energy storage devices. Due to their superb characteristics of high power density and long cycle life compared to the conventional batteries, their high pulse-power capability is very excellent. Inter-ests in supercapacitor energy-storage systems have arisen in recent years on account of possible applications…  相似文献   

14.
Polycrystalline samples of a novel spin-liquid compound Tb2Ti2O7 were prepared by a standard solid-state reaction. X-ray diffraction at room temperature confirms that the synthesized compound of Tb2Ti2O7 is single phase with cubic unit cell constant a0 of 1.015 44 nm. Magnetic susceptibility measurements in the temperature range between 100 and 300 K give an effective moment of 9.44 μB and Curie-Weiss temperature of 12.68 K, respectively, indicating the dominance of antiferromagnetic interactions. However, below 50 K, the magnetic behavior of Tb2Ti2O7 deviates from Curie-Weiss law, whose origin remains suspicion.  相似文献   

15.
Superparamagnetic carbon-coated Fe3O4 nanoparticles with high magnetization (85 emu·g-1) and high crystallinity were synthesized using polyethylene glycol-4000 (PEG (4000)) as a carbon source. Fe3O4 water-based bilayer-surfactant-enveloped ferrofluids were subsequently prepared using sodium oleate and PEG (4000) as dispersants. Analyses using X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy indicate that the Fe3O4 nanoparticles with a bilayer surfactant coating retain the inverse spinel-type structure and are successfully coated with sodium oleate and PEG (4000). Transmission electron microscopy, vibrating sample magnetometry, and particle-size analysis results indicate that the coated Fe3O4 nanoparticles also retain the good saturation magnetization of Fe3O4 (79.6 emu·g-1) and that the particle size of the bilayer-surfactant-enveloped Fe3O4 nanoparticles is 42.97 nm, which is substantially smaller than that of the unmodified Fe3O4 nanoparticles (486.2 nm). UV–vis and zeta-potential analyses reveal that the ferrofluids does not agglomerate for 120 h at a concentration of 4 g·L-1, which indicates that the ferrofluids are highly stable.  相似文献   

16.
The synthesis process of LiCo0.3Ni0.7O2 was investigated by FT-IR, mass spectroscopy, elemental analysis, SEM, BET, TG/DTA and XRD in this paper. The results revealed that lithium and transition metal ions were trapped homogeneously on an atomic scale throughout the precursor. Li2CO3, NiO and CoO are the intermediate products obtained after decomposition of the precursor and Li2CO3 undergoes direct reactions with NiO and CoO to form LiCo0.3Ni0.7O2. Moreover, the kinetics of formation of LiCo0.3Ni0.7O2 by dtrate sol-gel method is faster than the case of the conventional solid-state reaction between lithium carbonate and corresponding reactants. The single phase of LiCo0.3Ni0.7O2 was synthesized at temperature as low as 550℃. The discharge capacity of LiCo0.3Ni0.7O2 increases from 127 to 185 mAh/g as the caldnation temperature increasing from 550 to 750℃. After 100 cycles, the discharge capacity of the sample calcined at 750℃ is 155 mAh/g. The electrochemical study shows that the LiCo0.3Ni0.7O2 has high discharge capacity and good cycling behavior for lithium ion batteries.  相似文献   

17.
Nanoparticles of Ce0.6Zr0.35Y0.05O2 (CZY) solid solution have been prepared by the CTAB (hexadecyl-trimethyl ammonium bromide), CTAB-EG (ethylene glycol) templating, and CTAB-EG-NaCl (in which the pores of the precursor synthesized by the CTAB-EG method is filled by a certain amount of NaCl) method, respectively. The physical properties of these materials were characterized by means of tech-niques such as X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and N2 adsorp-tion-desorption measurements. The CZY samples synthesized by the above three methods display wormhole-like mesoporous morphology and cubic crystal structures. The materials are narrow in pore size distribution (averaged pore diameter = 5.3―7.1 nm), high in surface areas (95―119 m2/g), and large in pore volumes (0.16―0.18 cm3/g). It has been demonstrated that the introduction of NaCl is capable of retaining the pore structures of solid nanomaterials at high-temperature calcination.  相似文献   

18.
Mesa-structured intrinsic Jospehson junctions are fabricated in Bi2Sr2CaCu2O8 x single crystals.Typical current-voltage characteristics of intrinsic Josephson junctions are observed .which include multiple quasi-particle branches,surface junction with critical current lower than those of inner junctions.and subgap structures on quasi-particle branches,The corresponding physical explanations are also given .The energy gap voltage of the intrinsic Josephson junctions at 30 K is about 20mV Besides,The measured Ic-T relationship agrees quite well with the theoretical computations based on dx′-y′-wave superconductor.Our measured dI/dV-V relationship shows the V-shaped gap structure,obviously differing from the U-shaped gap structure of the s-wave superconductor.  相似文献   

19.
The effects of temperature on corrosion and the electrochemical behavior of Ni82.3Cr7Fe3Si4.5B3.2 glassy alloy in HCl, H2SO4, and H3PO4 acids were studied using AC and DC techniques. Impedance data reveal that the susceptibility to localized corrosion increases with increasing temperature. Potentiodynamic polarization curves reveal that the bulk glassy alloy is spontaneously passivated at all the investigated temperature in H2SO4 and H3PO4 solutions. A localized corrosion effect in HCl solution is clearly observed. The apparent activation energies in the regions of Tafel, active, and passive, as well as the enthalpies and entropies of the dissolution process were determined and discussed. The high apparent activation energy (Ea) value for H3PO4 solution in Tafel region is explained by the low aggressivity of PO43- ions.  相似文献   

20.
The three composites Y2O3 :Er3+ , Y2O3 :Er3+ /Yb 3+ andY2O3 :Er3+ /TiO2 were prepared using coprecipitation and sol-gel techniques. Their morphology, specific surface area, porosity, UV-vis. absorption spectra and fluorescence spectra were measured using SEM, TEM, surface analysis, UV-vis. absorption and photoluminescence spectrophotometry. SEM and TEM showed that samples prepared using coprecipitation were dispersed, while Y2O3 :Er3+ /TiO2 particles possessed a mesoporous surface and average diameter of ab...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号