共查询到20条相似文献,搜索用时 0 毫秒
1.
运动车辆图像中车牌具有所占比例小、位置不固定和大小不一的特点,因此,对车辆图像分割时车牌区域容易产生过分割与欠分割问题.脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)被誉为"第三代神经网络"并广泛应用于图像分割.在利用PCNN模拟人类视觉的图像分割过程中,由于传统PCNN模型中的连接矩阵使用固定值表示,使得PCNN模型不能满足图像分割时尺度变化的需求.为了解决这个问题,本文提出了基于多尺度空间PCNN模型的车辆图像分割算法,将尺度空间引入PCNN模型,使PCNN模型具有了尺度特性,提高了系统自适应分割车牌图像的能力. 相似文献
2.
参考了Eckhom等人近几年提出的脉冲耦合神经网络(Pulse Coupled Neuml Network)模型,结合灰度直方图分割技术,提出了一种新的多门限图像分割方法-基于直方图的脉冲耦合神经网络(PCNN),PCNN模型具有弥补时隙和空隙的特点,因此应用这一网络模型进行图像分割,可以得到较完整的区域边角信息,从而达到理想的分割效果.经实验证明,本文提出的方法较原来的PCNN网络,运算速度和分割效果都有了很大提高。 相似文献
3.
研究了基于PCNN的人脸图像分割算法。利用简化型PCNN对人脸图像进行分割,根据人脸图像的灰度特征和空间信息的相关性,得到了人脸图像的神经元点火序列,该点火序列就是图像分割的结果。通过MATLAB仿真实现了该算法,表明该算法具有一定的工程价值。 相似文献
4.
图像分割是模式识别和计算机视觉中的一个经典问题。近年来出现了很多图像分割新技术,其中基于脉冲耦合神经网络(PCNN)的图像分割技术由于它源于猫的大脑视觉皮层上的同步脉冲发放现象最为引人注目。本文对PCNN图像分割技术进行了全面的介绍。 相似文献
5.
《合肥工业大学学报(自然科学版)》2021,44(2)
灰狼优化(grey wolf optimization,GWO)算法是模拟灰狼的种群活动而提出的群智能算法,该算法因其在高维度的求解精度较高而受到广泛关注,但是它与其他群智能算法一样存在收敛慢和易陷入局部最优的缺点。针对GWO算法所存在的问题,文章基于非线性控制因子和遗传算法中的变异思想,提出了一种改进的基于非线性控制因子和遗传变异的GWO算法(grey wolf optimization algorithm based on the nonlinear control factor and genetic variation,NGGWO),并提出一种基于余弦变换的非线性收敛因子,用于平衡算法的全局与局部搜索能力;同时,在算法中引入遗传变异策略,用于解决算法陷入局部时的停滞现象;通过一组基准测试函数,将NGGWO与GWO和其改进算法进行比较。实验结果表明,NGGWO基本优于GWO算法,相比于该文提出的3种改进GWO算法,NGGWO也具有性能上的优势。 相似文献
6.
针对无线传感器网络(WSN)节点在随机部署时,存在分布不均匀的情况,从而导致覆盖率较低的问题,提出了一种改进的灰狼优化(GWO)算法.首先利用Tent混沌映射初始化种群,增加种群的多样性;其次利用改进的非线性收敛因子,平衡算法的全局搜索能力与局部搜索精度;最后将差分进化(DE)算法的变异、交叉的理念融入GWO算法,避免算法陷入局部最优,并提高算法的收敛速度.基本测试函数仿真结果验证了改进算法的有效性,随后将其应用于WSN覆盖优化问题,可以使节点的分布更加均匀,显著提高覆盖率,进而改善网络性能. 相似文献
7.
为了减少人脸图像中姿势、表情和光照等因素对人脸识别的影响,引用了一种基于脉冲发放强度的脉冲耦合神经网络(PCNN,pulse coupled neural network)的人脸特征提取方法。不同人脸图像具有不同的灰度特征,将人脸图像输入PCNN模型后可以得到各个图像特定的脉冲发放强度矩阵。实验利用脉冲强度矩阵作为人脸特征,并结合距离分类器——余弦距离进行人脸识别。仿真实验表明,基于强度PCNN模型提取的特征能刻画出人脸的细节,对于不同姿势、表情及面部明显遮挡物的人脸图像,具有较好的识别结果。该方法对于复杂人脸图像特征的提取,具有较强的鲁棒性。 相似文献
8.
基于邻域激励脉冲耦合神经网络的图像分割 总被引:1,自引:0,他引:1
设计了一种基于邻域激励脉冲耦合神经网络(PCNN)模型的图像分割方法.把既考虑强度又考虑邻域分布的像素邻域信息作为一个参数,来控制PCNN模型中的链接强度,进而控制神经元的内部活动值.在分割过程中采用基于多数裁定原则的方法,通过在一次迭代过程中对邻域像素分割阈值的调整,保证了分割结果的完整性.通过对几类图像的分割实验以及与经典分割方法的比较,验证了该方法的有效性. 相似文献
9.
在基于脉冲耦合神经网络(PCNN)模型中,讨论了模型中阈值θ、链接权ω和迭代次数量N等参数的求解方法;采用最大熵值及PCNN模型对生物细胞图像进行了分割,并分析了各参数对图像分割质量的影响.实验结果表明,分割图像熵值越大,分割图像总体效果越好. 相似文献
10.
针对基本灰狼优化算法(grey wolf optimizer,GWO)在求解复杂优化问题时存在解精度低、探索与开发能力不平衡、收敛速度慢和易陷入局部最优的缺点,提出一种基于多策略融合的改进灰狼优化算法.首先,设计一种基于正弦函数的非线性过渡参数策略替代原灰狼优化算法中的线性递减策略,以实现算法从勘探到开发的良好过渡;其次,利用个体自身历史最佳位置和决策层个体共同引导群体进行搜索,以加速算法收敛速度和提高寻优精度;然后,在当前最优灰狼个体上引入小孔成像学习策略产生新的候选个体,以降低算法陷入局部最优的概率.选取6个基准测试函数进行数值实验.结果 表明:改进算法在求解精度和收敛速度指标上均优于其他比较算法.最后,将改进算法用于求解特征选择问题,对10个基准数据集的仿真结果表明,改进算法能有效地提高分类精度和选择最优特征. 相似文献
11.
针对合成孔径雷达(synthetic aperture radar,SAR)和多光谱图像融合结果易出现空间细节信息丢失问题,文章提出一种相位一致性和脉冲耦合神经网络(pulse coupled neural network,PCNN)相结合的图像融合方法.利用强度-色调-饱和度(intensity-hue-satura... 相似文献
12.
一种基于简化PCNN的红外图像分割方法 总被引:1,自引:2,他引:1
提出一种基于简化脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)的红外图像分割新方法.针对红外航拍图像所具有的噪声大、灰度范围较窄以及具有对比度反转现象等特征,从原始图像与分割图像的相似性出发,采用最大互相关匹配来确定PCNN的最优参数,最终完成图像分割.实验结果验证了该方法的有效性. 相似文献
13.
基于二维Tsallis熵的改进PCNN图像分割 总被引:8,自引:1,他引:8
为了改善图像分割的性能,采用改进的脉冲耦合神经网络(PCNN)进行分割,通过对其内部活动项进行空不变的单阈值化分割,来达到对原图像空变阈值化分割效果.另外分割准则也作了修正,通过计算图像二维直方图的Tsallis熵,得到二维Tsallis熵,以此作为图像分割准则.最后,修正了动态门限项的下降速度,使得PCNN收敛更快.实验证明二维Tsallis熵准则优于最大Shannon熵准则与最小交叉熵准则,且改进的PCNN模型比传统PCNN模型收敛更快. 相似文献
14.
结合灰度熵变换的PCNN小目标图像检测新方法 总被引:1,自引:0,他引:1
为了自动地进行小目标图像分割检测,从含单一弱小目标图像的特征出发,提出了一种结合灰度熵变换的脉冲耦合神经网络(PCNN)小目标图像分割检测新方法. 该方法在对有随机噪声和复杂背景图像进行非线性灰度熵变换滤波的基础上,考虑灰度熵值灰度图在满足先验概率目标背景比条件下,选择包含单一小目标局部窗口作为处理图像区域,并在局部最小交叉熵判据下,进行改进型PCNN迭代分割检测处理. 实验结果表明,该方法不仅能可靠地检测出复杂背景及随机噪声干扰下弱小目标,并且在PCNN运行处理过程中,可自动地完成最佳分割检测. 相似文献
15.
基于PCNN的图像二值化及分割评价方法 总被引:3,自引:0,他引:3
针对目前图像二值化方法通用性不强、自适应阈值选取难,以及单一图像分割评价缺乏可靠性的问题,对基于脉冲耦合神经网络(PCNN)的图像二值化方法及其参数选择进行了研究,提出了一种综合考虑多种评价准则的用于评价图像分割效果的方法.实验结果表明:基于PCNN的二值化方法非常适合于各类图像的分割,具有分割精度高的特点;与单一评价方法相比,文中的综合评价方法能够更加客观准确地反映分割方法的分割效果. 相似文献
16.
针对在基于脉冲耦合神经网络(PCNN)模型的图像分割中,如何确定合适的网络参数的问题,提出一种基于PCNN的参数自适应图像分割方法。该方法通过设定神经元合适的捕获范围和连接值,综合利用图像像素邻域的灰度信息,结合PCNN网络参数间的相互联系,实现对模型参数自动确定。仿真实验表明,该方法可有效地对不同图像进行自适应分割。与传统的PCNN图像分割方法相比具有一定的优越性。 相似文献
17.
在小波变换理论的基础上,提出了一种结合小波分解和脉冲耦合神经网络(PCNN)的遥感图像融合新方法.首先对两幅已经配准的原始遥感图像进行小波多尺度分解,得到低频子带系数和各带通子带系数;其次对低频子带系数采取一种基于边缘的方法以得到融合图像的低频子带系数;对各带通子带系数提出了一种改进的基于PCNN 的图像融合方法来确定融合图像的各带通子带系数;最后通过逆小波变换重构图像得到融合后的图像.仿真结果和评价指标结果表明,此方法更好地保留了原图像中的有用信息,提高了融合图像的质量. 相似文献
18.
提出了一种结合区域生长算法和脉冲耦合神经网络进行图像分割的方法.该方法将待分割图像的像素点映射为PCNN模型中的神经元,把改进的脉冲耦合神经网络模型的点火频率同区域生长的理论结合起来进行图像分割.实验表明该方法分割的图像与传统的分割法相比具有边缘信息更加完整,区域划分更加准确,分割效果更能符合人眼视觉的识别特征. 相似文献
19.
无需设置参数的快速 PCNN 图像分割 总被引:1,自引:0,他引:1
脉冲耦合神经网络(PCNN)拥有良好的仿生学依据,在图像分割领域获得了很大的成功。但传统 PCNN 网络需要设置大量参数,且需要对最佳迭代结果进行选择。以往提出的经典解决方法大多需要预设一个较高的迭代次数,且部分参数依靠经验设定。针对参数设置和时间复杂度2个问题,设计了一种仅需2次迭代,参数设置自适应于图像统计特征的 PCNN 图像分割算法,避免了凭经验设定参数、多次迭代造成运行时间长的问题。实验表明:算法的分割结果主观视觉感受良好,并且在速度上优于对比算法。 相似文献
20.
神经网络在图像分割时需要计算大量的训练数据,计算速度跟不上实时数据处理,造成分割图像的质量较差的问题,分析了传统优化BP神经网络算法中存在的问题,提出了一种将增加动量项与自适应调整学习率相结合的优化BP神经网络图像分割方法,该方法可以加快迭代速度,还可以跳出过早局部极小值的局面。最后对经典图像进行分割实验验证,取得较好的效果,同时该算法还有效的缩短了图像分割的时间。 相似文献