首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TCP1 complex is a molecular chaperone in tubulin biogenesis.   总被引:2,自引:0,他引:2  
A role in folding of newly translated proteins in the cytosol of eukaryotes has been proposed for t-complex polypeptide-1 (TCP1), although its molecular targets have not yet been identified. Tubulin is a major cytosolic protein whose assembly into microtubules is critical to many cellular processes. Although numerous studies have focused on the expression of tubulin, little is known about the processes whereby newly translated tubulin subunits acquire conformations that enable them to form alpha-beta-heterodimers. We examined the biogenesis of alpha- and beta-tubulin in rabbit reticulocyte lysate, and report here that newly translated tubulin subunits entered a 900K complex in a protease-sensitive conformation. Addition of Mg-ATP, but not nonhydrolysable analogues, released the tubulin subunits as assembly-competent protein with a conformation that was relatively protease-resistant. The 900K complex purified from reticulocyte lysate contained as its major constituent a 58K protein that cross-reacted with a monoclonal antiserum against mouse TCP1. We conclude that TCP1 functions as a cytosolic chaperone in the biogenesis of tubulin.  相似文献   

2.
J D Trent  E Nimmesgern  J S Wall  F U Hartl  A L Horwich 《Nature》1991,354(6353):490-493
There is evidence to suggest that components of archaebacteria are evolutionarily related to cognates in the eukaryotic cytosol. We postulated that the major heat-shock protein of the thermophilic archaebacterium, Sulfolobus shibatae, is a molecular chaperone and that it is related to an as-yet unidentified chaperone component in the eukaryotic cytosol. Acquired thermotolerance in S. shibatae correlates with the predominant synthesis of this already abundant protein, referred to as thermophilic factor 55 (TF55). TF55 is a homo-oligomeric complex of two stacked 9-membered rings, closely resembling the 7-membered-ring complexes of the chaperonins, groEL, hsp60 and Rubisco-binding protein. The TF55 complex binds unfolded polypeptides in vitro and has ATPase activity-features consistent with its being a molecular chaperone. The primary structure of TF55, however, is not significantly related to the chaperonins. On the other hand, it is highly homologous (36-40% identity) to a ubiquitous eukaryotic protein, t-complex polypeptide-1 (TCP1). In Saccharomyces cerevisiae, TCP1 is an essential protein that may play a part in mitotic spindle formation. We suggest that TF55 in archaebacteria and TCP1 in the eukaryotic cytosol are members of a new class of molecular chaperones.  相似文献   

3.
H Murakami  G Blobel  D Pain 《Nature》1990,347(6292):488-491
We have previously identified an integral membrane protein (p32) from Saccharomyces cerevisiae as a receptor for protein import into mitochondria, and have localized it to the mitochondrial outer membrane at contact sites. Here we report isolation of the corresponding mitochondrial import receptor gene, termed MIR1. The deduced amino-acid sequence of p32 shows roughly 40% identity with proteins of bovine heart and rat liver that have been suggested to be mitochondrial phosphate carriers. Haploid cells carrying a disrupted MIR1 allele were unable to grow on a non-fermentable carbon source but grew in media containing glucose, indicating that the MIR1 protein is essential for mitochondrial function. Compared with wild type, amounts of some mitochondrial proteins were markedly reduced in cells containing a disrupted MIR1 allele, whereas levels of others were unchanged. This indicates that yeast contains more than one pathway for protein import into mitochondria.  相似文献   

4.
The mitochondrial chaperonin hsp60 is required for its own assembly   总被引:14,自引:0,他引:14  
M Y Cheng  F U Hartl  A L Horwich 《Nature》1990,348(6300):455-458
Heatshock protein 60 (hsp60) in the matrix of mitochondria is essential for the folding and assembly of newly imported proteins. Hsp60 belongs to a class of structurally related chaperonins found in organelles of endosymbiotic origin and in the bacterial cytosol. Hsp60 monomers form a complex arranged as two stacked 7-mer rings. This 14-mer complex binds unfolded proteins at its surface, then seems to catalyse their folding in an ATP-dependent process. The question arises as to how such an assembly machinery is itself folded and assembled. Hsp60 subunits are encoded by a nuclear gene and translated in the cytosol as precursors which are translocated into mitochondria and proteolytically processed. In both intact cells and isolated mitochondria of the hsp60-defective yeast mutant mif4, self-assembly of newly imported wild-type subunits is not observed. Functional pre-existing hsp60 complex is required in order to form new, assembled, 14-mer. Subunits imported in vitro are assembled with a surprisingly fast half-time of 5-10 min, indicative of a catalysed reaction. These findings are further evidence that self-assembly may not be the principal mechanism by which proteins attain their functional conformation in the intact cell.  相似文献   

5.
70K heat shock related proteins stimulate protein translocation into microsomes   总被引:203,自引:0,他引:203  
W J Chirico  M G Waters  G Blobel 《Nature》1988,332(6167):805-810
A yeast cytosol is shown to contain two distinct activities that stimulate protein translocation across microsomal membranes. One activity was purified. It consists of two constitutively expressed 70K heat shock related proteins that increase the rate of translocation. Possible mechanisms of action of these proteins are discussed.  相似文献   

6.
Lilley BN  Ploegh HL 《Nature》2004,429(6994):834-840
After insertion into the endoplasmic reticulum (ER), proteins that fail to fold there are destroyed. Through a process termed dislocation such misfolded proteins arrive in the cytosol, where ubiquitination, deglycosylation and finally proteasomal proteolysis dispense with the unwanted polypeptides. The machinery involved in the extraction of misfolded proteins from the ER is poorly defined. The human cytomegalovirus-encoded glycoproteins US2 and US11 catalyse the dislocation of class I major histocompatibility complex (MHC) products, resulting in their rapid degradation. Here we show that US11 uses its transmembrane domain to recruit class I MHC products to a human homologue of yeast Der1p, a protein essential for the degradation of a subset of misfolded ER proteins. We show that this protein, Derlin-1, is essential for the degradation of class I MHC molecules catalysed by US11, but not by US2. We conclude that Derlin-1 is an important factor for the extraction of certain aberrantly folded proteins from the mammalian ER.  相似文献   

7.
Y Ye  H H Meyer  T A Rapoport 《Nature》2001,414(6864):652-656
In eukaryotic cells, incorrectly folded proteins in the endoplasmic reticulum (ER) are exported into the cytosol and degraded by the proteasome. This pathway is co-opted by some viruses. For example, the US11 protein of the human cytomegalovirus targets the major histocompatibility complex class I heavy chain for cytosolic degradation. How proteins are extracted from the ER membrane is unknown. In bacteria and mitochondria, members of the AAA ATPase family are involved in extracting and degrading membrane proteins. Here we demonstrate that another member of this family, Cdc48 in yeast and p97 in mammals, is required for the export of ER proteins into the cytosol. Whereas Cdc48/p97 was previously known to function in a complex with the cofactor p47 (ref. 5) in membrane fusion, we demonstrate that its role in ER protein export requires the interacting partners Ufd1 and Npl4. The AAA ATPase interacts with substrates at the ER membrane and is needed to release them as polyubiquitinated species into the cytosol. We propose that the Cdc48/p97-Ufd1-Npl4 complex extracts proteins from the ER membrane for cytosolic degradation.  相似文献   

8.
D S Reading  R L Hallberg  A M Myers 《Nature》1989,337(6208):655-659
The hsp60 protein isolated from the protozoan Tetrahymena thermophila is induced in response to heat stress and is a member of an immunologically conserved family represented in Escherichia coli and in mitochondria of plants and animals. We report here the cloning and characterization of a nuclear gene, HSP60, which codes for the hsp60 homologue from the yeast Saccharomyces cerevisiae. Nucleotide sequence analysis revealed that yeast hsp60 is related to the groEL protein of E. coli and the RUBISCO-binding protein (RBP) of chloroplasts. HSP60 was found to be the genetic locus of the conditional-lethal mutation described by Cheng et al., which at non-permissive temperature is defective in the assembly of several different multisubunit complexes in mitochondria. These data are consistent with the hypothesis that the groEL-related proteins serve an evolutionarily conserved function as accessory factors facilitating the folding and/or association of individual subunits of multimeric protein complexes.  相似文献   

9.
M P Kamps  S S Taylor  B M Sefton 《Nature》1984,310(5978):589-592
p60src, the transforming protein of Rous sarcoma virus (RSV), is a protein kinase that has a strict specificity for tyrosine. The phosphorylation of cellular proteins by p60src (ref. 4) results in transformation. Recently, Barker and Dayhoff discovered that residues 259-485 of p60src have 22% sequence identity with residues 33-258 of the catalytic subunit of cyclic AMP-dependent protein kinase, an enzyme that has a specificity for serine. Because it was necessary to introduce eight gaps to align the two proteins, the question remained as to whether this apparent homology reflected a common evolutionary origin. We demonstrate here that the ATP analogue p-fluorosulphonylbenzoyl 5'-adenosine (FSBA) inactivates the tyrosine protein kinase activity of p60src by reacting with lysine 295. When aligned for maximum sequence identity, lysine 295 of p60src and the lysine in the catalytic subunit which also reacts specifically with FSBA are superimposed precisely. This functional homology is strong evidence that the protein kinases, irrespective of amino acid substrate specificity, comprise a single divergent gene family.  相似文献   

10.
An essential role for a phospholipid transfer protein in yeast Golgi function   总被引:51,自引:0,他引:51  
V A Bankaitis  J R Aitken  A E Cleves  W Dowhan 《Nature》1990,347(6293):561-562
Progression of proteins through the secretory pathway of eukaryotic cells involves a continuous rearrangement of macromolecular structures made up of proteins and phospholipids. The protein SEC14p is essential for transport of proteins from the yeast Golgi complex. Independent characterization of the SEC14 gene and the PIT1 gene, which encodes a phosphatidylinositol/phosphatidylcholine transfer protein in yeast, indicated that these two genes are identical. Phospholipid transfer proteins are a class of cytosolic proteins that are ubiquitous among eukaryotic cells and are distinguished by their ability to catalyse the exchange of phospholipids between membranes in vitro. We show here that the SEC14 and PIT1 genes are indeed identical and that the growth phenotype of a sec14-1ts mutant extends to the inability of its transfer protein to effect phospholipid transfer in vitro. These results therefore establish for the first time an in vivo function for a phospholipid transfer protein, namely a role in the compartment-specific stimulation of protein secretion.  相似文献   

11.
S Nada  M Okada  A MacAuley  J A Cooper  H Nakagawa 《Nature》1991,351(6321):69-72
The protein-tyrosine kinase activity of the proto-oncogene product p60c-src is negatively regulated by the phosphorylation of a tyrosine residue close to the C terminus, tyrosine 527. The phosphorylation might be catalysed by a so-far-unidentified tyrosine kinase, distinct from p60c-src. Recently we purified a protein-tyrosine kinase that specifically phosphorylates tyrosine 527 of p60c-src from neonatal rat brain. We have now confirmed the specificity of this enzyme by using a mutant p60c-src that has a phenylalanine instead of tyrosine 527, and cloned a complementary DNA that encodes the enzyme. The enzyme is similar to kinases of the src family in that it has two conserved regions, Src-homology regions 2 and 3, upstream of a tyrosine kinase domain. The amino-acid identity of each region is no more than 47%, however, and the enzyme lacks phosphorylation sites corresponding to tyrosines 416 and 527 of p60c-src and has no myristylation signal. These results suggest that this protein-tyrosine kinase, which might negatively regulate p60c-src, represents a new type of tyrosine kinase.  相似文献   

12.
Wright CF  Teichmann SA  Clarke J  Dobson CM 《Nature》2005,438(7069):878-881
Incorrect folding of proteins, leading to aggregation and amyloid formation, is associated with a group of highly debilitating medical conditions including Alzheimer's disease and late-onset diabetes. The issue of how unwanted protein association is normally avoided in a living system is particularly significant in the context of the evolution of multidomain proteins, which account for over 70% of all eukaryotic proteins, where the effective local protein concentration in the vicinity of each domain is very high. Here we describe the aggregation kinetics of multidomain protein constructs of immunoglobulin domains and the ability of different homologous domains to aggregate together. We show that aggregation of these proteins is a specific process and that the efficiency of coaggregation between different domains decreases markedly with decreasing sequence identity. Thus, whereas immunoglobulin domains with more than about 70% identity are highly prone to coaggregation, those with less than 30-40% sequence identity do not detectably interact. A bioinformatics analysis of consecutive homologous domains in large multidomain proteins shows that such domains almost exclusively have sequence identities of less than 40%, in other words below the level at which coaggregation is likely to be efficient. We propose that such low sequence identities could have a crucial and general role in safeguarding proteins against misfolding and aggregation.  相似文献   

13.
Kaganovich D  Kopito R  Frydman J 《Nature》2008,454(7208):1088-1095
The accumulation of misfolded proteins in intracellular amyloid inclusions, typical of many neurodegenerative disorders including Huntington's and prion disease, is thought to occur after failure of the cellular protein quality control mechanisms. Here we examine the formation of misfolded protein inclusions in the eukaryotic cytosol of yeast and mammalian cell culture models. We identify two intracellular compartments for the sequestration of misfolded cytosolic proteins. Partition of quality control substrates to either compartment seems to depend on their ubiquitination status and aggregation state. Soluble ubiquitinated misfolded proteins accumulate in a juxtanuclear compartment where proteasomes are concentrated. In contrast, terminally aggregated proteins are sequestered in a perivacuolar inclusion. Notably, disease-associated Huntingtin and prion proteins are preferentially directed to the perivacuolar compartment. Enhancing ubiquitination of a prion protein suffices to promote its delivery to the juxtanuclear inclusion. Our findings provide a framework for understanding the preferential accumulation of amyloidogenic proteins in inclusions linked to human disease.  相似文献   

14.
利用纳米β-磷酸三钙/聚乳酸(β-TCP/PLA92)复合材料制备内外双层结构的颈椎椎间融合器.考察了β-TCP重量百分数为10%,30%和60%的外支架复合材料在磷酸盐缓冲溶液中的降解行为、机械性能和热力学性质.结果表明,体外降解30周,降解液的pH>6.9,材料失重率<1.1%,外观形态完好;PLA分子量下降50%以上,复合材料机械性能明显下降,但10%和60%TCP的复合材料抗压强度均大于50 MPa,满足椎间融合器的临床应用要求.10%TCP的复合材料降解过程中,PLA发生了明显的结晶,而其余材料则不明显,说明β-TCP的存在不利于PLA结晶.乳液相分离/粒子沥滤法制得了大孔235~435μm和小孔1~10μm并存的复合孔结构的内层支架.为新型生物可降解颈椎融合器的研制提供了依据.  相似文献   

15.
Mitochondrial membrane remodelling regulated by a conserved rhomboid protease   总被引:25,自引:0,他引:25  
McQuibban GA  Saurya S  Freeman M 《Nature》2003,423(6939):537-541
Rhomboid proteins are intramembrane serine proteases that activate epidermal growth factor receptor (EGFR) signalling in Drosophila. Rhomboids are conserved throughout evolution, and even in eukaryotes their existence in species with no EGFRs implies that they must have additional roles. Here we report that Saccharomyces cerevisiae has two rhomboids, which we have named Rbd1p and Rbd2p. RBD1 deletion results in a respiratory defect; consistent with this, Rbd1p is localized in the inner mitochondrial membrane and mutant cells have disrupted mitochondria. We have identified two substrates of Rbd1p: cytochrome c peroxidase (Ccp1p); and a dynamin-like GTPase (Mgm1p), which is involved in mitochondrial membrane fusion. Rbd1p mutants are indistinguishable from Mgm1p mutants, indicating that Mgm1p is a key substrate of Rbd1p and explaining the rbd1Delta mitochondrial phenotype. Our data indicate that mitochondrial membrane remodelling is regulated by cleavage of Mgm1p and show that intramembrane proteolysis by rhomboids controls cellular processes other than signalling. In addition, mitochondrial rhomboids are conserved throughout eukaryotes and the mammalian homologue, PARL, rescues the yeast mutant, suggesting that these proteins represent a functionally conserved subclass of rhomboid proteases.  相似文献   

16.
17.
通过对文昌鱼神经胚cDNA文库进行测序,获得编码文昌鱼AmphiCKS1样蛋白基因的cDNA序列,将演绎的氨基酸序列与多种脊椎动物和无脊椎动物的同源物进行比较。其同源性与人或家鼠的为77%,非洲爪蟾的为73.4%,果蝇的为77%,帽贝的为75%,线虫的为47.9%,酵母的为31.1%。结果证实在进化上介于脊椎动物和无脊椎动物之间的文昌鱼,由Amphicks 1基因所编码的AmphiCKS 1样蛋白更接近于脊椎动物;同时说明青岛文昌鱼Amphicks 1基因在进化上具有较高保守性。  相似文献   

18.
Microconversion between murine H-2 genes integrated into yeast   总被引:9,自引:0,他引:9  
C J Wheeler  D Maloney  S Fogel  R S Goodenow 《Nature》1990,347(6289):192-194
Patchwork homology observed between divergent members of polymorphic multigene families is thought to reflect evolution by short-tract gene conversion (nonreciprocal recombination), although this mechanism cannot usually be confirmed in higher organisms. In contrast to meiotic conversions observed in laboratory yeast strains, apparent conversions between polymorphic sequences, such as the class I loci of the major histocompatibility complex (MHC), are short and do not seem to be associated with reciprocal recombination (crossover, exchanges). We have now integrated two nonallelic murine class I genes into yeast to characterize their meiotic recombination. We found no crossovers between the MHC genes, but short-tract 'microconversions' of 1-215 base-pairs were observed in about 6% of all meioses. Strikingly, one of these events was accompanied by a single base-pair mutation. These results underscore both the importance of meiotic gene conversion and sequence heterology in determining conversion patterns between divergent genes.  相似文献   

19.
大规模网络中BitTorrent流行为分析   总被引:1,自引:0,他引:1  
在使用基于特征串方法准确采集国内最流行的P2P应用--BitTorrent应用流量的基础上,研究了BitTorrent应用的流长、流持续时间、流速以及端结点传输的流量、连接数等测度的分布,并分析了各分布中的异常情况.分析结果表明:BitTorrent应用流量已占网络总流量的60%;BitTorrent平均流长超过总体TCP流长的20倍;流长、流持续时间均服从Weibull分布,且二者行为相似;BitTorrent平均流速低于总体TCP流速,但随着流长的增长流速增快;BitTorrent网络有很强的不平衡性,约1%的结点贡献了80%的流量和连接数.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号