首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective pharmacological Na+/H+ exchange (NHE) inhibitors were used to identify functional NHE isoforms in human small intestinal enterocytes (Caco-2) and to distinguish between direct and indirect effects on transport via the intestinal di/tripeptide transporter hPepT1. The relative potencies of these inhibitors to inhibit 22Na+ influx identifies NHE3 and NHE1 as the apical and basolateral NHE isoforms. The Na+-dependent (NHE3-sensitive) component of apical dipeptide ([14C] Gly-Sar) uptake was inhibited by the selective NHE inhibitors with the same order of potency observed for inhibition of apical 22Na+ uptake. However, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) also reduced [14C]Gly-Sar uptake in the absence of Na+ and this inhibition was concentration and pH (maximal at pH 5.5) dependent. NHE3 inhibition by S1611 and S3226 modulates dipeptide uptake indirectly by reducing the transapical driving force (H+ electrochemical gradient). EIPA (at 100 μM) has similar effects, but at higher concentrations (>200 μM) also has direct inhibitory effects on hPepT1.Received 28 February 2005; received after revision 20 April 2005; accepted 20 May 2005  相似文献   

2.
Summary Both normetanephrine and metanephrine were found to be oxidized by both types of monoamine oxidase in mouse liver mitochondria. Both Km and Vmax values of type B MAO for both substrates were higher than those of type A MAO, which caused the shift of inhibition curves with clorgyline and deprenyl according to the increase in substrate concentration.  相似文献   

3.
Summary The effects of La3+ and ruthenium red on the energy-linked uptake of Ca2+ mediated by a synthetic neutral Ca2+ ionophore have been investigated in rat liver mitochondria. The results indicate that unspecific surface charge effects do not play a major role in the mechanism of inhibition of mitochondrial Ca2+ transport by La3+ and ruthenium red.Acknowledgments. The authors are indebted to Prof. W. Simon, ETH Zurich, for having provided samples of the synthetic neutral Ca2+ ligand, and to M. Mattenberger for the valuable technical assistence. The work was supported by a grant of the Swiss Nationalfonds (grant No. 3.1720.75).  相似文献   

4.
Summary Synephrine (SP) was found to be a substrate for monoamine oxidase (MAO) in rat brain mitochondria, showing the Km and Vmax values of 250 M and 32.6 nmoles/mg of protein/30 min respectively. The inhibition studies showed that the SP oxidation was carried out by both type A and type B MAO and a major part of the activity was due to type A MAO.  相似文献   

5.
Bafilomycin A1 (Baf) induces an elevation of cytosolic Ca2+ and acidification in neuronal cells via inhibition of the V-ATPase. Also, Baf uncouples mitochondria in differentiated PC12 (dPC12), dSH-SY5Y cells and cerebellar granule neurons, and markedly elevates their respiration. This respiratory response in dPC12 is accompanied by morphological changes in the mitochondria and decreases the mitochondrial pH, Ca2+ and ΔΨm. The response to Baf is regulated by cytosolic Ca2+ fluxes from the endoplasmic reticulum. Inhibition of permeability transition pore opening increases the depolarizing effect of Baf on the ΔΨm. Baf induces stochastic flickering of the ΔΨm with a period of 20 ± 10 s. Under conditions of suppressed ATP production by glycolysis, oxidative phosphorylation impaired by Baf does not provide cells with sufficient ATP levels. Cells treated with Baf become more susceptible to excitation with KCl. Such mitochondrial uncoupling may play a role in a number of (patho)physiological conditions induced by Baf.  相似文献   

6.
Zusammenfassung Es wird gezeigt, dass bei männlichen Wistar-Ratten im 3-Wochen-Diätexperiment mit Zusatz von 0,3% 2-Methyl-2-(p-1,2,3,4-Tetrahydro-1-naphthylphenoxy)-Propionsäure (Su-13437) die Oxydation von 26-14C-Cholesterin zu14CO2 durch Lebermitochondrien (bezogen auf mg/N) ähnlich wie bei den Kontrollen war. Bei den Versuchstieren war jedoch bei Abwesenheit von Cytosol im System die Oxydation durch Lebermitochondrien erhöht.

Acknowledgment. This work was supported, in part, by a grant No. HE-03299 and a Research Career Award No. 4-K6-HE-0734 from the National Heart Institute, N.I.H. We are indebted to Dr. W. I.Taylor, CIBA Pharmaceutical Co., Summit, N.J., for the generous gift of Su-13,437.  相似文献   

7.
Mitochondria contain a specific Ca2+ release pathway which operates when oxidized mitochondrial pyridine nucleotides are hydrolyzed. NAD+ hydrolysis and therefore Ca2+ release is possible when some vicinal thiols are cross-linked. Here we report that the thiol oxidant peroxovanadate inhibits the specific Ca2+ release pathway. In mitochondria, peroxovanadate causes a complete loss of reduced glutathione, which is not accompanied by formation of glutathione disulfide, and a partial loss of protein thiols. In model reactions, peroxovanadate oxidizes reduced glutathione predominantly to the sulfonate derivative, but does not react with glutathione disulfide. When the vicinal thiols relevant for Ca2+ release are cross-linked, Ca2+ release is no longer inhibited by peroxovanadate. Conversely, pretreatment of mitochondria with peroxovanadate makes them insensitive to compounds promoting the disulfide state. These results suggest that peroxovanadate inhibits the prooxidant-induced Ca2+ release from mitochondria by (i) depleting mitochondria of reduced glutathione and (ii) oxidizing the vicinal thiols relevant for Ca2+ release to a state higher than disulfide, presumably the sulfonate state. The findings provide further insight into the regulation of Ca2+ release from intact mitochondria, and may be relevant for a better understanding of the action of peroxovanadate in cells, where the compound can be insulin mimetic. Received 28 March 2002; received after revision 8 May 2002; accepted 15 May 2002  相似文献   

8.
The role of some serine/threonine kinases in the regulation of mitochondrial physiology is now well established, but little is known about mitochondrial tyrosine kinases. We showed that tyrosine phosphorylation of rat brain mitochondrial proteins was increased by in vitro addition of ATP and H2O2, and also during in situ ATP production at state 3, and maximal reactive oxygen species production. The Src kinase inhibitor PP2 decreased tyrosine phosphorylation and respiratory rates at state 3. We found that the 39-kDa subunit of complex I was tyrosine phosphorylated, and we identified putative tyrosine-phosphorylated subunits for the other complexes. We also have strong evidence that the FoF1-ATP synthase α chain is probably tyrosine-phosphorylated, but demonstrated that the β chain is not. The tyrosine phosphatase PTP 1B was found in brain but not in muscle, heart or liver mitochondria. Our results suggest that tyrosine kinases and phosphatases are involved in the regulation of oxidative phosphorylation.Received 7 January 2005; received after revision 19 April 2005; accepted 22 April 2005  相似文献   

9.
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and Pi. The bacterial and mitochondrial H+-ATP synthases both consist of a membranous sector, F0, which forms a H+-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H+-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.  相似文献   

10.
Tyrosine phosphorylation by unidentified enzymes has been observed in mitochondria, with recent evidence indicating that non-receptorial tyrosine kinases belonging to the Src family, which represent key players in several transduction pathways, are constitutively present in mitochondria. The extent of protein phosphorylation reflects a coordination balance between the activities of specific kinases and phophatases. The present study demonstrates that purified rat brain mitochondria possess endogenous tyrosine phosphatase activity. Mitochondrial phosphatases were found to be capable of dephosphorylating different exogenous substrates, including paranitrophenylphosphate, 32P-poly(Glu-Tyr)4:1 and 32P-angiotensin. These activities are strongly inhibited by peroxovanadate, a well-known inhibitor of tyrosine phosphatases, but not by inhibitors of alkali or Ser/Thr phosphatases, and mainly take place in the intermembrane space and outer mitochondrial membrane. Using a combination of approaches, we identified the tyrosine phosphatase Shp-2 in mitochondria. Shp-2 plays a crucial role in a number of intracellular signalling cascades and is probably involved in several human diseases. It thus represents the first tyrosine phosphatase shown to be present in mitochondria.Received 17 May 2004; received after revision 20 July 2004; accepted 26 July 2004  相似文献   

11.
O Suzuki  T Matsumoto  M Oya  Y Katsumata 《Experientia》1979,35(10):1283-1284
Synephrine (SP) was found to be a substrate for monoamine oxidase (MAO) in rat brain mitochondria, showing the Km and Vmax values of 250 microM and 32.6 nmoles/mg of protein/30 min respectively. The inhibition studies showed that the SP oxidation was carried out by both type A and type B MAO and a major part of the activity was due to type A MAO.  相似文献   

12.
O Suzuki  T Matsumoto 《Experientia》1985,41(5):634-636
Both normetanephrine and metanephrine were found to be oxidized by both types of monoamine oxidase in mouse liver mitochondria. Both Km and Vmax values of type B MAO for both substrates were higher than those of type A MAO, which caused the shift of inhibition curves with clorgyline and deprenyl according to the increase in substrate concentration.  相似文献   

13.
Summary The administration of 15(R)-15-methyl prostaglandin E2 (15(R)-15-M-PGE2) in vivo significantly diminished the uptake of59Fe into blood, spleen, liver, femur and dried intestine of rats, whereas acetylsalicylic acid (ASA) increased the counts significantly. This effect of ASA was counteracted by 15(R)-15-M-PGE2. It is suggested that prostaglandins (PGs) might play an important role in inhibiting iron absorption at the intestinal level.This work was supported by grant No.6638 from CONICET (Argentina). The technical assistance of Mrs María E. Castro and Norma Rizzo is gratefully acknowleged.  相似文献   

14.
We investigated the role of nitric oxide (NO) in the mitochondrial derangement associated with the functional response to ischemia-reperfusion of hyperthyroid rat hearts. Mitochondria were isolated at 3000 g from hearts subjected to ischemia-reperfusion, with or without N-nitro-L-arginine (L-NNA, an NO synthase inhibitor). During reperfusion, hyperthyroid hearts displayed tachycardia and low functional recovery. Their mitochondria exhibited O2 consumption similar to euthyroid controls, while H2O2 production, hydroperoxide, protein-bound carbonyl and nitrotyrosine levels, and susceptibility to swelling were higher. L-NNA blocked the reperfusion tachycardic response and increased inotropic recovery in hyperthyroid hearts. L-NNA decreased mitochondrial H2O2 production and oxidative damage, and increased respiration and tolerance to swelling. Such effects were higher in hyperthyroid preparations. These results confirm the role of mitochondria in ischemia-reperfusion damage, and strongly suggest that NO overproduction is involved in the high mitochondrial dysfunction and the low recovery of hyperthyroid hearts from ischemia-reperfusion. L-NNA also decreased protein content and cytochrome oxidase activity of a mitochondrial fraction isolated at 8000 g. This and previous results suggest that the above fraction contains, together with light mitochondria, damaged mitochondria coming from the heaviest fraction, which has the highest cytochrome oxidase activity and capacity to produce H2O2. Therefore, we propose that the high mitochondrial susceptibility to swelling, favoring mitochondrial population purification from H2O2-overproducing mitochondria, limits hyperthyroid heart oxidative stress.Received 24 March 2004; received after revision 9 June 2004; accepted 5 July 2004  相似文献   

15.
The Ca2+-binding protein parvalbumin (PV) and mitochondria play important roles in Ca2+ signaling, buffering and sequestration. Antagonistic regulation of PV and mitochondrial volume is observed in in vitro and in vivo model systems. Changes in mitochondrial morphology, mitochondrial volume and dynamics (fusion, fission, mitophagy) resulting from modulation of PV were investigated in MDCK epithelial cells with stable overexpression/downregulation of PV. Increased PV levels resulted in smaller, roundish cells and shorter mitochondria, the latter phenomenon related to reduced fusion rates and decreased expression of genes involved in mitochondrial fusion. PV-overexpressing cells displayed increased mitophagy, a likely cause for the decreased mitochondrial volumes and the smaller overall cell size. Cells showed lower mobility in vitro, paralleled by reduced protrusions. Constitutive PV down-regulation in PV-overexpressing cells reverted mitochondrial morphology and fractional volume to the state present in control MDCK cells, resulting from increased mitochondrial movement and augmented fusion rates. PV-modulated, bi-directional and reversible mitochondrial dynamics are key to regulation of mitochondrial volume.  相似文献   

16.
Summary The urinary protein 2u stimulates adrenal 5-3 dehydrogenase activity and prevents adrenal enlargement in estrogen-treated adult male rats.Acknowledgements. Dehydroepiandrosterone used in this study was donated by Organon(India) Ltd, Calcutta. This work received financial support from University Grants' Commission, New Delhi. The author's thanks are due to Prof. A. K. Maiti and Prof. C. Deb, Department of Physiology, Calcutta University, for their constant encouragement.  相似文献   

17.
Cancer cell metabolism is characterized by limited oxidative phosphorylation in order to minimize oxidative stress. We have previously shown that the flavonoid flavone in HT-29 colon cancer cells increases the uptake of pyruvate or lactate into mitochondria, which is followed by an increase in O2−.. production that finally leads to apoptosis. Similarly, a supply of palmitoylcarnitine in combination with carnitine induces apoptosis in HT-29 cells by increasing the mitochondrial respiration rate. Here we show that flavone-induced apoptosis is increased more than twofold in the presence of palmitoylcarnitine due to increased mitochondrial fatty acid transport and the subsequent metabolic generation of O2−. in mitochondria is the initiating factor for the execution of apoptosis. Received 12 August 2005; received after revision 12 October 2005; accepted 14 October 2005  相似文献   

18.
Summary Weak and strong organic bases behave in an opposite manner in respect to several mitochondrial functions. The former induce a catalytic exchange with K+ in valinomycon-treated, respiratory-inhibited mitochondria, and act as uncouplers in respiring mitochondria. The latter induce a stoicheometric exchange with K+ and are actively taken up by respiring mitochondria.  相似文献   

19.
The long-recognized fact that oxidative stress within mitochondria is a hallmark of mitochondrial dysfunction has stimulated the development of mitochondria-targeted antioxidant therapies. Melatonin should be included among the pharmacological agents able to modulate mitochondrial functions in cancer, given that a number of relevant melatonin-dependent effects are triggered by targeting mitochondrial functions. Indeed, melatonin may modulate the mitochondrial respiratory chain, thus antagonizing the cancer highly glycolytic bioenergetic pathway of cancer cells. Modulation of the mitochondrial respiratory chain, together with Ca2+ release and mitochondrial apoptotic effectors, may enhance the spontaneous or drug-induced apoptotic processes. Given that melatonin may efficiently counteract the Warburg effect while stimulating mitochondrial differentiation and mitochondrial-based apoptosis, it is argued that the pineal neurohormone could represent a promising new perspective in cancer treatment strategy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号