首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J G Donaldson  D Finazzi  R D Klausner 《Nature》1992,360(6402):350-352
The fungal metabolite brefeldin A is a powerful tool for investigating membrane traffic in eukaryotic cells. The effects of brefeldin A on traffic are partly explained by its ability to prevent binding of cytosolic coat proteins onto membranes. The non-clathrin coatomer complex binds reversibly to Golgi membranes in a GTP-controlled cycle. The low-molecular-mass GTP-binding protein ADP-ribosylation factor (ARF), which also associates reversibly with Golgi membranes, is required for coatomer binding and probably accounts for the control by guanine nucleotide of the coatomer-membrane interaction. Brefeldin A prevents the assembly of coatomer onto the membrane by inhibiting the GTP-dependent interaction of ARF with the Golgi membrane, but the nature of this interaction has not been established. Here we demonstrate that Golgi membranes can specifically catalyse the exchange of GTP onto ARF and that brefeldin A prevents this function.  相似文献   

2.
Membrane-enveloped vesicles travel among the compartments of the cytoplasm of eukaryotic cells, delivering their specific cargo to programmed locations by membrane fusion. The pairing of vesicle v-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) with target membrane t-SNAREs has a central role in intracellular membrane fusion. We have tested all of the potential v-SNAREs encoded in the yeast genome for their capacity to trigger fusion by partnering with t-SNAREs that mark the Golgi, the vacuole and the plasma membrane. Here we find that, to a marked degree, the pattern of membrane flow in the cell is encoded and recapitulated by its isolated SNARE proteins, as predicted by the SNARE hypothesis.  相似文献   

3.
Studies of intracellular traffic in yeast and mammalian systems have implicated members of the Rab family of small GTP-binding proteins as regulators of membrane fusion. We have used the patch clamp technique to measure exocytotic fusion events directly and investigate the role of GTP-binding proteins in regulating exocytosis in mast cells. Intracellular perfusion of mast cells with GTP-gamma S is sufficient to trigger complete exocytotic degranulation in the absence of other intracellular messengers. Here we show that GTP is a potent inhibitor of GTP-gamma S-induced degranulation, indicating that sustained activation of a GTP-binding protein is sufficient for membrane fusion. We have found that synthetic oligopeptides, corresponding to part of the effector domain of Rab3a, stimulate complete exocytotic degranulation, similar to that induced by GTP-gamma S. The response is selective for Rab3a sequence and is strictly dependent on Mg2+ and ATP. This suggests that sustained activation of a Rab3 protein causes exocytotic fusion. The peptide response can be accelerated by GDP-beta S, suggesting that Rab3a peptides compete with endogenous Rab3 proteins for a binding site on a target effector protein, which causes fusion on activation.  相似文献   

4.
Topological restriction of SNARE-dependent membrane fusion   总被引:16,自引:0,他引:16  
Parlati F  McNew JA  Fukuda R  Miller R  Söllner TH  Rothman JE 《Nature》2000,407(6801):194-198
To fuse transport vesicles with target membranes, proteins of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex must be located on both the vesicle (v-SNARE) and the target membrane (t-SNARE). In yeast, four integral membrane proteins, Sed5, Bos1, Sec22 and Bet1 (refs 2-6), each probably contribute a single helix to form the SNARE complex that is needed for transport from endoplasmic reticulum to Golgi. This generates a four-helix bundle, which ultimately mediates the actual fusion event. Here we explore how the anchoring arrangement of the four helices affects their ability to mediate fusion. We reconstituted two populations of phospholipid bilayer vesicles, with the individual SNARE proteins distributed in all possible combinations between them. Of the eight non-redundant permutations of four subunits distributed over two vesicle populations, only one results in membrane fusion. Fusion only occurs when the v-SNARE Bet1 is on one membrane and the syntaxin heavy chain Sed5 and its two light chains, Bos1 and Sec22, are on the other membrane where they form a functional t-SNARE. Thus, each SNARE protein is topologically restricted by design to function either as a v-SNARE or as part of a t-SNARE complex.  相似文献   

5.
R Diaz  L S Mayorga  P J Weidman  J E Rothman  P D Stahl 《Nature》1989,339(6223):398-400
In reconstitution studies N-ethylmaleimide, a sulphydryl alkylating reagent, inhibits both fusion of endocytic vesicles and vesicular transport in the Golgi apparatus. We show here that the same N-ethylmaleimide-sensitive factor that catalyses the vesicle-mediated transport within Golgi stacks is also required for endocytic vesicle fusion. Thus, it is likely that a common mechanism for vesicle fusion exists for both the secretory and endocytic pathways of eukaryotic cells.  相似文献   

6.
Sequential interactions with Sec23 control the direction of vesicle traffic   总被引:1,自引:0,他引:1  
Lord C  Bhandari D  Menon S  Ghassemian M  Nycz D  Hay J  Ghosh P  Ferro-Novick S 《Nature》2011,473(7346):181-186
How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum (ER). Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains its coat until it reaches the Golgi. A Golgi-associated kinase, Hrr25p (CK1δ orthologue), then phosphorylates the Sec23p/Sec24p complex. Coat phosphorylation and dephosphorylation are needed for vesicle fusion and budding, respectively. Additionally, we show that Sec23p interacts in a sequential manner with different binding partners, including TRAPPI and Hrr25p, to ensure the directionality of ER-Golgi traffic and prevent the back-fusion of a COPII vesicle with the ER. These events are conserved in mammalian cells.  相似文献   

7.
Cai H  Yu S  Menon S  Cai Y  Lazarova D  Fu C  Reinisch K  Hay JC  Ferro-Novick S 《Nature》2007,445(7130):941-944
The budding of endoplasmic reticulum (ER)-derived vesicles is dependent on the COPII coat complex. Coat assembly is initiated when Sar1-GTP recruits the cargo adaptor complex, Sec23/Sec24, by binding to its GTPase-activating protein (GAP) Sec23 (ref. 2). This leads to the capture of transmembrane cargo by Sec24 (refs 3, 4) before the coat is polymerized by the Sec13/Sec31 complex. The initial interaction of a vesicle with its target membrane is mediated by tethers. We report here that in yeast and mammalian cells the tethering complex TRAPPI (ref. 7) binds to the coat subunit Sec23. This event requires the Bet3 subunit. In vitro studies demonstrate that the interaction between Sec23 and Bet3 targets TRAPPI to COPII vesicles to mediate vesicle tethering. We propose that the binding of TRAPPI to Sec23 marks a coated vesicle for fusion with another COPII vesicle or the Golgi apparatus. An implication of these findings is that the intracellular destination of a transport vesicle may be determined in part by its coat and its associated cargo.  相似文献   

8.
N T Ktistakis  M E Linder  M G Roth 《Nature》1992,356(6367):344-346
In many mammalian cells brefeldin A interferes with mechanisms that keep the Golgi appartus separate from the endoplasmic reticulum. The earliest effect of brefeldin A is release of the coat protein beta-COP from the Golgi. This release is blocked by pretreatment with GTP-gamma S or AlF4- (ref. 12). The AlF4- ion activates heterotrimeric G proteins but not proteins of the ras superfamily, suggesting that a heterotrimeric G protein might control membrane transfer from the endoplasmic reticulum to the Golgi. We report here that mastoparan, a peptide that activates heterotrimeric G proteins, promotes binding of beta-COP to Golgi membranes in vitro and antagonizes the effect of brefeldin A on beta-COP in perforated cells and on isolated Golgi membranes. This inhibition is greatly diminished if cells are pretreated with pertussis toxin before perforation. Thus, a heterotrimeric G protein of the Gi/Go subfamily regulates association of coat components with Golgi membranes.  相似文献   

9.
T Tuomikoski  M A Felix  M Dorée  J Gruenberg 《Nature》1989,342(6252):942-945
Membrane transport between the endoplasmic reticulum and the plasma membrane, which involves the budding and fusion of carrier vesicles, is inhibited during mitosis in animal cells. At the same time, the Golgi complex and the nuclear envelope, as well as the endoplasmic reticulum in some cell types, become fragmented. Fragmentation of the Golgi is believed to facilitate its equal partitioning between daughter cells. In fact, it has been postulated that both the inhibition of membrane traffic and Golgi fragmentation during mitosis are due to an inhibition of vesicle fusion, while vesicle budding continues. Although less is known about the endocytic pathway, internalization and receptor recycling are also arrested during mitosis. We have now used a cell-free assay to show that the fusion of endocytic vesicles from baby hamster kidney cells is reduced in Xenopus mitotic cytosol when compared with interphase cytosol. We reconstituted this inhibition in interphase cytosol by adding a preparation enriched in the starfish homologue of the cdc2 protein kinase. Inhibition was greater than or equal to 90% when the added cdc2 activity was in the range estimated for that in mitotic Xenopus eggs, which indicates that during mitosis the cdc2 kinase mediates an inhibition of endocytic vesicle fusion, and possibly other fusion events in membrane traffic.  相似文献   

10.
The Rab5 effector EEA1 is a core component of endosome docking   总被引:44,自引:0,他引:44  
Intracellular membrane docking and fusion requires the interplay between soluble factors and SNAREs. The SNARE hypothesis postulates that pairing between a vesicular v-SNARE and a target membrane z-SNARE is the primary molecular interaction underlying the specificity of vesicle targeting as well as lipid bilayer fusion. This proposal is supported by recent studies using a minimal artificial system. However, several observations demonstrate that SNAREs function at multiple transport steps and can pair promiscuously, questioning the role of SNAREs in conveying vesicle targeting. Moreover, other proteins have been shown to be important in membrane docking or tethering. Therefore, if the minimal machinery is defined as the set of proteins sufficient to reproduce in vitro the fidelity of vesicle targeting, docking and fusion as in vivo, then SNAREs are not sufficient to specify vesicle targeting. Endosome fusion also requires cytosolic factors and is regulated by the small GTPase Rab5. Here we show that Rab5-interacting soluble proteins can completely substitute for cytosol in an in vivo endosome-fusion assay, and that the Rab5 effector EEA1 is the only factor necessary to confer minimal fusion activity. Rab5 and other associated proteins seem to act upstream of EEA1, implying that Rab5 effectors comprise both regulatory molecules and mechanical components of the membrane transport machinery. We further show that EEA1 mediates endosome docking and, together with SNAREs, leads to membrane fusion.  相似文献   

11.
Hu K  Carroll J  Fedorovich S  Rickman C  Sukhodub A  Davletov B 《Nature》2002,415(6872):646-650
Release of neurotransmitter occurs when synaptic vesicles fuse with the plasma membrane. This neuronal exocytosis is triggered by calcium and requires three SNARE (soluble-N-ethylmaleimide-sensitive factor attachment protein receptors) proteins: synaptobrevin (also known as VAMP) on the synaptic vesicle, and syntaxin and SNAP-25 on the plasma membrane. Neuronal SNARE proteins form a parallel four-helix bundle that is thought to drive the fusion of opposing membranes. As formation of this SNARE complex in solution does not require calcium, it is not clear what function calcium has in triggering SNARE-mediated membrane fusion. We now demonstrate that whereas syntaxin and SNAP-25 in target membranes are freely available for SNARE complex formation, availability of synaptobrevin on synaptic vesicles is very limited. Calcium at micromolar concentrations triggers SNARE complex formation and fusion between synaptic vesicles and reconstituted target membranes. Although calcium does promote interaction of SNARE proteins between opposing membranes, it does not act by releasing synaptobrevin from synaptic vesicle restriction. Rather, our data suggest a mechanism in which calcium-triggered membrane apposition enables syntaxin and SNAP-25 to engage synaptobrevin, leading to membrane fusion.  相似文献   

12.
Identification of a widespread nuclear actin binding protein   总被引:16,自引:0,他引:16  
  相似文献   

13.
腺苷酸核糖基化因子1(ADP ribosylation factor 1,ARF1)是一种小G蛋白,负责调控细胞内的囊泡运输,从而影响细胞的生长发育.采用分子克隆的方法构建人类ARF1(hARF1)蛋白的重组质粒pET28a-hARF1,并在大肠杆菌(Escherichia coli)BL21(DE3)中表达纯化,随后利用荧光光谱法和分子对接方法研究hARF1蛋白与嘌呤核苷酸(GDP/ADP)之间的弱相互作用.研究结果表明,重组表达的hARF1蛋白分子质量22 859.29u,与理论值基本一致,其纯度大于95%,产率为5mg/L左右;GDP/ADP与hARF1蛋白弱相互作用的结合常数分别为0.022 69和0.007 71(μmol/L)-1,说明hARF1蛋白选择性地结合GDP,这与细胞内hARF1蛋白只结合GDP的结论一致.  相似文献   

14.
Low-molecular-weight GTP-binding proteins are strong candidates for regulators of membrane traffic. In yeast, mutations in the sec4 or ypt1 genes encoding small GTP-binding proteins inhibit constitutive membrane flow at the plasma membrane or Golgi complex, respectively. It has been suggested that membrane fusion-fission events are regulated by cycling of small GTP-binding proteins between a membrane-bound and free state, but although most of these small proteins are found in both soluble and tightly membrane-bound forms, there is no direct evidence to support such cycling. In rat brain a small GTP-binding protein, rab3A, is exclusively associated with synaptic vesicles, the secretory organelles of nerve terminals. Here we use isolated nerve terminals to study the fate of rab3A during synaptic vesicle exocytosis. We find that rab3A dissociates quantitatively from the vesicle membrane after Ca2(+)-dependent exocytosis and that this dissociation is partially reversible during recovery after stimulation. These results are direct evidence for an association-dissociation cycle of a small GTP-binding protein during traffic of its host membrane.  相似文献   

15.
Small GTP-binding protein associated with Golgi cisternae   总被引:53,自引:0,他引:53  
B Goud  A Zahraoui  A Tavitian  J Saraste 《Nature》1990,345(6275):553-556
Eukaryotic cells seem to use GTP hydrolysis to regulate vesicular traffic in exocytosis and endocytosis. The best evidence for this comes from studies on the yeast Saccharomyces cerevisiae that have identified two small Ras-related GTP-binding proteins, Sec4p and Ypt1p, which control distinct stages of the secretory pathway. In mammalian cells the effects of a non-hydrolysable GTP analogue, GTP-gamma S, on different transport events have suggested that they also have proteins functionally related to yeast Sec4p and Ypt1p. The rab genes have recently been cloned and sequenced for rat and human and their proteins have highly conserved domains in common with Sec4p and Ypt1p (including a putative effector binding site). They are therefore good candidates for GTP-binding proteins involved in intracellular transport in mammalian cells. One of the Rab proteins (Rab1p) is the mammalian counterpart of Ypt1p (ref. 13). Here we report the localization of the protein Rab6p to the Golgi apparatus in several cell types. By immunolabelling and electron microscopy, Rab6p appears to be concentrated predominantly on the medial and trans cisternae and distributed over their entire surface.  相似文献   

16.
Guanine-nucleotide exchange factors on ADP-ribosylation factor GTPases (ARF-GEFs) regulate vesicle formation in time and space by activating ARF substrates on distinct donor membranes. Mammalian GBF1 (ref. 2) and yeast Gea1/2 (ref. 3) ARF-GEFs act at Golgi membranes, regulating COPI-coated vesicle formation. In contrast, their Arabidopsis thaliana homologue GNOM (GN) is required for endosomal recycling, playing an important part in development. This difference indicates an evolutionary divergence of trafficking pathways between animals and plants, and raised the question of how endoplasmic reticulum-Golgi transport is regulated in plants. Here we demonstrate that the closest homologue of GNOM in Arabidopsis, GNOM-LIKE1 (GNL1; NM_123312; At5g39500), performs this ancestral function. GNL1 localizes to and acts primarily at Golgi stacks, regulating COPI-coated vesicle formation. Surprisingly, GNOM can functionally substitute for GNL1, but not vice versa. Our results suggest that large ARF-GEFs of the GBF1 class perform a conserved role in endoplasmic reticulum-Golgi trafficking and secretion, which is done by GNL1 and GNOM in Arabidopsis, whereas GNOM has evolved to perform an additional plant-specific function of recycling from endosomes to the plasma membrane. Duplication and diversification of ARF-GEFs in plants contrasts with the evolution of entirely new classes of ARF-GEFs for endosomal trafficking in animals, which illustrates the independent evolution of complex endosomal pathways in the two kingdoms.  相似文献   

17.
M G Waters  T Serafini  J E Rothman 《Nature》1991,349(6306):248-251
Golgi-derived coated vesicles contain a set of coat proteins of relative molecular mass 160,000 (Mr 160K; alpha-COP), 110K (beta-COP), 98K (gamma-COP) and 61K (delta-COP), and several smaller subunits. We have now identified and purified a cytosolic complex containing the same four coat proteins as those of Golgi transport vesicles. We term this complex the Golgi coat promoter or 'coatomer'. The coatomer also contains polypeptides of Mr 36K, 35K and 20K. It represents about 0.2% of soluble cytosolic protein. Gel filtration of unfractionated cytosol indicates that beta-COP resides exclusively in the coatomer complex. The complex seems to be a likely candidate for the unassembled precursor of Golgi coated vesicles, and its purification should help investigations of the role of coat proteins in membrane budding, for which it is necessary to use a refined cell-free system.  相似文献   

18.
19.
Clathrin light chains and secretory vesicle binding proteins are distinct   总被引:1,自引:0,他引:1  
C E Creutz  J R Harrison 《Nature》1984,308(5955):208-210
Recently, several groups have initiated studies on cytosolic proteins that bind to isolated secretory vesicle membranes in the presence of Ca2+ in order to identify proteins that may regulate exocytosis. Two major chromaffin granule binding proteins, of molecular weights 32,000 (32K) and 34,000 (34K), were reported to have the same mobility on one-dimensional SDS gels as clathrin-associated light chains from the adrenal medulla, and the 34K granule binding protein the same one-dimensional peptide map as the 34K clathrin light chain. These observations support the hypothesis that Ca2+-dependent recruitment of soluble light chains to the vesicle membrane may nucleate the assembly of a clathrin coat and initiate endocytosis. Here we report that two-dimensional peptide maps of the clathrin light chains and of all chromaffin granule membrane binding proteins in the 30K range are distinct, and therefore fail to support this hypothesis. It has also been suggested that some or all of the vesicle binding proteins require calmodulin for their interaction with the membrane. However, we find that antagonism of calmodulin by trifluoperazine does not prevent the association of the other cytosolic proteins with the chromaffin granule membrane.  相似文献   

20.
Bigay J  Gounon P  Robineau S  Antonny B 《Nature》2003,426(6966):563-566
Protein coats deform flat lipid membranes into buds and capture membrane proteins to form transport vesicles. The assembly/disassembly cycle of the COPI coat on Golgi membranes is coupled to the GTP/GDP cycle of the small G protein Arf1. At the heart of this coupling is the specific interaction of membrane-bound Arf1-GTP with coatomer, a complex of seven proteins that forms the building unit of the COPI coat. Although COPI coat disassembly requires the catalysis of GTP hydrolysis in Arf1 by a specific GTPase-activating protein (ArfGAP1), the precise timing of this reaction during COPI vesicle formation is not known. Using time-resolved assays for COPI dynamics on liposomes of controlled size, we show that the rate of ArfGAP1-catalysed GTP hydrolysis in Arf1 and the rate of COPI disassembly increase over two orders of magnitude as the curvature of the lipid bilayer increases and approaches that of a typical transport vesicle. This leads to a model for COPI dynamics in which GTP hydrolysis in Arf1 is organized temporally and spatially according to the changes in lipid packing induced by the coat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号