首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Integrins and cardiovascular disease   总被引:2,自引:0,他引:2  
Cardiovascular diseases involve abnormal cell-cell interactions leading to the development of atherosclerotic plaque, which when ruptured causes massive platelet activation and thrombus formation. Parts of a loose thrombus may detach to form an embolus, blocking circulation at a more distant point. The integrins are a family of adhesive cell receptors interacting with adhesive proteins or with counterreceptors on other cells. There is now solid evidence that the major integrin on platelets, the fibrinogen receptor α IIbβ 3 , has an important role in several aspects of cardiovascular diseases and that its regulated inhibition leads to a reduction in incidence and mortality due to these disorders. The development of α IIbβ 3 inhibitors is an important strategy of many pharmaceutical companies which foresee a large market for the treatment of acute conditions in surgery, the symptoms of chronic conditions and, it is hoped, maybe even the successful prophylaxis of these conditions. Although all the associated problems have not been solved, the undoubted improvements in patient care resulting from the first of these treatments in the clinic have stimulated further research on the role of integrins on other vascular cells in these processes and in the search for new inhibitors. Both the development of specific inhibitors and of mice with specific integrin subunit genes ablated have contributed to a better understanding of the function of integrins in development of the cardiovascular system.  相似文献   

2.
Ligand recognition by the I domain-containing integrins   总被引:11,自引:0,他引:11  
Seven of the integrin α subunits described to date, α 1 , α 2 , α L , α X , α d , α M and α E , contain a highly conserved I (or A) domain of approximately 200 amino acid residues inserted near the amino-terminus of the subunit. As the result of a variety of independent experimental approaches, a large body of data has recently accumulated that indicates that the I domains are independent, autonomously folding domains capable of directly binding ligands that play a necessary and important role in ligand binding by the intact integrins. Recent crystallographic studies have elucidated the structures of recombinant α M and α L I domains and also delineated a novel divalent cation-binding motif within the I domains (metal ion-dependent adhesion site, MIDAS) that appears to mediate the divalent cation binding of the I domains and the I domain-containing integrins to their ligands.  相似文献   

3.
The human hair follicle is composed of different concentric compartments, which reflect different programmes of differentiation. Using monoclonal antibodies against α2β1 and α3β1 integrins we demonstrated a shift in their expression, from a basolateral distribution in the basal cells of the lower outer root sheath, to an apicolateral expression in the upper outer root sheath, as in epidermis. This shift takes place in a transition zone, localized to the midpart of the follicle. The distinct basolateral distribution of α2β1 and α3β1 integrins in the lower portion of the outer root sheath coincides with the presence of basal cell protrusions and is probably linked to the presence of the vitreous membrane which surrounds the bottom part of the anagen human hair follicle. Moreover, we showed that the expression of α6β4 integrin is discontinuous along the hair follicle and coincides with that of laminin 5. Together these results establish that within a given compartment – namely the outer root sheath – several domains can be clearly identified, which probably reflect the onset of successive differentiation pathways along the hair follicle. Received 17 January 1997; received after revision 18 February 1997; accepted 24 February 1997  相似文献   

4.
CCN1 (CYR61) is a dynamically expressed, multifunctional matricellular protein that plays essential roles in cardiovascular development during embryogenesis, and regulates inflammation, wound healing and fibrogenesis in the adult. Aberrant CCN1 expression is associated with myriad pathologies, including various cancers and diseases associated with chronic inflammation. CCN1 promotes diverse and sometimes opposing cellular responses, which can be ascribed, as least in part, to disparate activities mediated through its direct binding to distinct integrins in different cell types and contexts. Accordingly, CCN1 promotes cell proliferation, survival and angiogenesis by binding to integrin αvβ3, and induces apoptosis and senescence through integrin α6β1 and heparan sulfate proteoglycans. The ability of CCN1 to trigger the accumulation of a robust and sustained level of reactive oxygen species underlies some of its unique activities as a matrix cell-adhesion molecule. Emerging studies suggest that CCN1 might be useful as a biomarker or therapeutic target in certain diseases.  相似文献   

5.
Mechanism of HAb18G/CD147 underlying the metastasis process of human hepatoma cells has not been determined. In the present study, we found that integrin α3β1 colocalizes with HAb18G/CD147 in human 7721 hepatoma cells. The enhancing effect of HAb18G/CD147 on adhesion, invasion capacities and matrix metalloproteinases (MMPs) secretion was decreased by integrin α3β1 antibodies (p<0.01). The expressions of integrin downstream molecules including focal adhesion kinase (FAK), phospho-FAK (p-FAK), paxillin, and phospho-paxillin (p-paxillin) were increased in human hepatoma cells overexpressing HAb18G/CD147. Deletion of HAb18G/CD147 reduces the quantity of focal adhesions and rearranges cytoskeleton. Wortmannin and LY294002, specific phosphatidylinositol kinase (PI3K) inhibitors, reversed the effect of HAb18G/CD147 on the regulation of intracellular Ca2+ mobilization, significantly reducing cell adhesion, invasion and MMPs secretion potential (p<0.01). Together, these results suggest that HAb18G/CD147 enhances the invasion and metastatic potentials of human hepatoma cells via integrin α3β1-mediated FAK-paxillin and FAKPI3K-Ca2+ signal pathways. Received 5 June 2008; received after revision 16 July 2008; accepted 23 July 2008  相似文献   

6.
Integrin-mediated signal transduction   总被引:23,自引:0,他引:23  
Integrins, expressed on virtually every cell type, are proteins that mediate cellular interactions with components of the extracellular matrix (ECM) and cell surface integral plasma membrane proteins. In addition, integrins interact with the cytoskeleton and through this process participate in cell migration, tissue organization, cell growth, haemostasis, inflammation, target recognition of lymphocytes and the differentiation of many cell types. Signals generated from ligand-integrin interactions are propagated via the integrin cytoplasmic tails to signal transduction pathways within the cell (outside-in signalling). Information from within the cell can also be transmitted to the outside via integrin affinity modulation (inside-out signalling). Protein tyrosine phosphorylation has a central role in integrin-initiated cell signalling, leading to cytoskeletal organization and focal adhesion formation. This review will examine the current understanding of integrin function, focusing on the intracellular consequences of integrin-ligand interaction.  相似文献   

7.
Leukocyte integrins and inflammation   总被引:6,自引:0,他引:6  
Leukocyte adhesion is of pivotal functional importance. Without adequate adhesion, T lymphocytes and natural killer cells are not cytotoxic, B cells cannot develop into antibody secreting plasma cells, leukocytes do not home into inflamed tissues and myeloid cells are not able to phagocytize or exhibit chemotactic responses. During evolution several leukocyte adhesion molecules have developed belonging to a few molecular families. Among these, the leukocyte-specific integrins (β 2 integrins, CD11/CD18 molecules) are among the most important. Much progress has taken place during the past few years, and at present we have a considerable knowledge of their structure and function. Inflammation is critically dependent on integrin activity, and its regulation forms the topic of this short review.  相似文献   

8.
The parvins   总被引:5,自引:0,他引:5  
The parvins are a family of proteins involved in linking integrins and associated proteins with intracellular pathways that regulate actin cytoskeletal dynamics and cell survival. Both α-parvin (PARVA) and β-parvin (PARVB) localize to focal adhesions and function in cell adhesion, spreading, motility and survival through interactions with partners, such as integrin-linked kinase (ILK), paxillin, α-actinin and testicular kinase 1. A complex of PARVA with ILK and the LIM protein PINCH-1 is critical for cell survival in a variety of cells, including certain cancer cells, kidney podocytes and cardiac myocytes. While PARVA inhibits the activities of Rac1 and testicular kinase 1 and cell spreading, PARVB binds αPIX and α-actinin, and can promote cell spreading. In contrast to PARVA, PARVB inhibits ILK activity and reverses some of its oncogenic effects in cancer cells. This review focuses on the structure and function of the parvins and some possible roles in human diseases. Received 5 August 2005; received after revision 5 September 2005; accepted 22 September 2005  相似文献   

9.
Insulin action is initiated by binding to its cognate receptor, which then triggers multiple cellular responses by activating different signaling pathways. There is evidence that insulin receptor signaling may involve G protein activation in different target cells. We have studied the activation of G proteins in rat hepatoma (HTC) cells. We found that insulin stimulated binding of guanosine 5′-O-(3-thiotriphosphate) (GTP-γ-35S) to plasma membrane proteins of HTC cells, in a dose-dependent manner. This effect was completely blocked by pertussis toxin treatment of the membranes, suggesting the involvement of G proteins of the Gα i/Gα o family. The expression of these Gα proteins was checked by Western blotting. Next, we used blocking antibodies to sort out the specific Gα protein activated by insulin stimulation. Anti-Gα il,2 antibodies completely prevented insulin-stimulated GTP binding, whereas anti-Gα o,i3 did not modify this effect of insulin on GTP binding. Moreover, we found physical association of the insulin receptor with Gα i1,2 by copurification studies. These results further support the involvement of a pertussis toxin-sensitive G protein in insulin receptor signaling and provides some evidence of specific association and activation of Gα i1,2 protein by insulin. These findings suggest that Gα i1,2 proteins might be involved in insulin action. Received 23 September 1998; received after revision 23 November 1998; accepted 25 November 1998  相似文献   

10.
11.
Signal regulation by family conspiracy   总被引:6,自引:0,他引:6  
The signal regulating proteins (SIRPs) are a family of ubiquitously expressed transmembrane glycoproteins composed of two subgroups: SIRPα and SIRPβ, containing more than ten members. SIRPα has been shown to inhibit signalling through a variety of receptors including receptor tyrosine kinases and cytokine receptors. This function involves protein tyrosine kinases and is dependent on immunoreceptor tyrosine-based inhibition motifs which recruit key protein tyrosine phosphatases to the membrane. Negative regulation by SIRPα may also involve its ligand, CD47, in a bi-directional signalling mechanism. The SIRPβ subtype has no cytoplasmic domain but instead associates with at least one other transmembrane protein (DAP-12, or KARAP). DAP-12 possesses immunoreceptor tyrosine-based activation motifs within its cytoplasmic domain that are thought to link SIRPβ to activating machinery. SIRPα and SIRPβ thus have complementary roles in signal regulation and may conspire to tune the response to a stimulus. Received 6 July 2000; revised 2 August 2000; accepted 5 August 2000  相似文献   

12.
Integrin antagonists   总被引:4,自引:0,他引:4  
Integrins are a family of cell surface glycoproteins that mediate numerous cell-cell and cell-matrix interactions and are involved in biological processes such as tissue morphogenesis, leukocyte recirculation and migration, wound healing, blood clotting and immune response. Aberrant cell adhesion has been implicated in the pathogenesis of several diseases, including a number of inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease and asthma, as well as cancer and coronary heart disease. As such integrins are seen as excellent targets for the development of therapeutic agents. This report begins with an examination of the structure of integrin molecules and their ligands and then goes on to review the current state of development of antiintegrin antagonists. Received 13 April 1999; received after revision 28 May 1999; accepted 28 May 1999  相似文献   

13.
The chemokine CXCL8 is a powerful inducer of directional cell motility, primarily during inflammation. In this study, we found that CXCL8 stimulation led to paxillin phosphorylation in normal neutrophils, and that both CXCL8 receptors (CXCR1 and CXCR2) mediated CXCL8-induced paxillin phosphorylation. In CXCR2-transfected cells, the process depended on Gαi and Gαs coupling to CXCR2. Dominant negative (DN) paxillin increased CXCL8-induced adhesion and migration, indicating that endogenous paxillin keeps migration at submaximal levels. Furthermore, using activating antibodies to β1 integrins, analyses with focal adhesion kinase (FAK) DN variant (FRNK) and co-immunoprecipitations of FAK and paxillin, we found that β1 integrin ligation cooperates with CXCL8-induced stimulation, leading to FAK activation and thereafter to FAK-mediated paxillin phosphorylation. Our findings indicate that paxillin keeps directional motility at a restrained magnitude, and suggest that perturbations in its activation may lead to chemotactic imbalance and to pathological conditions associated with excessive or reduced leukocyte migration. R. Mintz, T. Meshel: These authors contributed equally to this work. Received 31 July 2008; received after revision 14 December 2008; accepted 16 December 2008  相似文献   

14.
New blood vessel formation, a process referred to as angiogenesis, is essential for embryonic development and for many physiological and pathological processes during postnatal life, including cancer progression. Endothelial cell adhesion molecules of the integrin family have emerged as critical mediators and regulators of angiogenesis and vascular homeostasis. Integrins provide the physical interaction with the extracellular matrix necessary for cell adhesion, migration and positioning, and induction of signaling events essential for cell survival, proliferation and differentiation. Antagonists of integrin alpha V beta 3 suppress angiogenesis in many experimental models and are currently tested in clinical trials for their therapeutic efficacy against angiogenesis-dependent diseases, including cancer. Furthermore, interfering with signaling pathways downstream of integrins results in suppression of angiogenesis and may have relevant therapeutic implications. In this article we review the role of integrins in endothelial cell function and angiogenesis. In the light of recent advances in the field, we will discuss their relevance as a therapeutic target to suppress tumor angiogenesis.  相似文献   

15.
16.
Paneth cells at the base of small intestinal crypts of Lieberkühn secrete high levels of α-defensins in response to cholinergic and microbial stimuli. Paneth cell α-defensins are broad spectrum microbicides that function in the extracellular environment of the intestinal lumen, and they are responsible for the majority of secreted bactericidal peptide activity. Paneth cell α-defensins confer immunity to oral infection by Salmonella enterica serovar Typhimurium, and they are major determinants of the composition of the small intestinal microbiome. In addition to host defense molecules such as α-defensins, lysozyme, and Pla2g2a, Paneth cells also produce and release proinflammatory mediators as components of secretory granules. Disruption of Paneth cell homeostasis, with subsequent induction of endoplasmic reticulum stress, autophagy, or apoptosis, contributes to inflammation in diverse genetic and experimental mouse models.  相似文献   

17.
Genetic engineering, coupled with spectro scopic analyses, has enabled the metal binding proper ties of the α and β subunits of mouse metallothionein 1 (MT) to be characterized. A heterologous expression system in E.coli has led to high yields of their pure zinc-complexed forms. The cadmium(II) binding properties of recombinant Zn4-αMT and Zn3-βMT have been studied by electronic absorption and circular dichroism. The former binds Cd(II) identically to α fragments obtained from mammalian organs, showing that the recombinant polypeptide behaves like the na tive protein. Titration of Zn3-βMT with CdCl2 results in the formation of Cd3-βMT. The addition of excess Cd(II) leads to Cd4-βMT which, with the extra loading of Cd(II), unravels to give rise isodichroically to Cd9-βMT. The effect of cadmium-displaced Zn(II) ions and excess Cd(II) above the full metal occupancy of three has been studied using Chelex-100. The Cd3-βMT species is stable in the presence of this strong metal-chelating agent. Received 20 May 1997; received after revision 7 July 1997; accepted 9 July 1997  相似文献   

18.
Flavocytochrome b 558 is the catalytic core of the respiratory-burst oxidase, an enzyme complex that catalyzes the NADPH-dependent reduction of O2 into the superoxide anion O2 - in phagocytic cells. Flavocytochrome b 558 is anchored in the plasma membrane. It is a heterodimer that consists of a large glycoprotein gp91phox (phox for phagocyte oxidase) (β subunit) and a small protein p22phox (α subunit). The other components of the respiratory-burst oxidase are water-soluble proteins of cytosolic origin, namely p67phox, p47phox, p40phox and Rac. Upon cell stimulation, they assemble with the membrane-bound flavocytochrome b 558 which becomes activated and generates O2 -. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections, illustrating the role of O2 - and the derived metabolites H2O2 and HOCl in host defense against invading microorganisms. The electron carriers, FAD and hemes b, and the binding site for NADPH are confined to the gp91phox subunit of flavocytochrome b 558 . The p22phox subunit serves as a docking site for the cytosolic phox proteins. This review provides an overview of current knowledge on the structural organization of the O2 --generating flavocytochrome b 558 , its kinetics, its mechanism of activation and the regulation of its biosynthesis. Homologues of gp91phox, called Nox and Duox, are present in a large variety of non-phagocytic cells. They exhibit modest O2 --generating oxidase activity, and some act as proton channels. Their role in various aspects of signal transduction is currently under investigation and is briefly discussed. Received 28 May 2002; received after revision 20 June 2002; accepted 24 June 2002  相似文献   

19.
During the 1950s, linear and multichain poly-α-amino acids were synthesized by polymerization of the corresponding N-carboxyamino acid anhydrides in solution in the presence of suitable catalysts. The resulting homo- and heteropolymers have since been widely employed as simple protein models. Under appropriate conditions, poly-α-amino acids, in the solid state and in solution, were found to acquire conformations of an α-helix and of β-parallel and antiparallel pleated sheets, or to exist as random coils. Their use in experimental and theoretical investigations of helix-coil transitions helped to shed new light on the mechanisms involved in protein denaturation. Conformational fluctuations of peptides in solution were analysed theoretically and studied experimentally by nonradiative energy-transfer techniques. Poly-α-amino acids played an important role in the deciphering of the genetic code. In addition, analysis of the antigenicity of poly-α-amino acids led to the elucidation of the factors determining the antigenicity of proteins and peptides. The synthetic procedures developed made possible the preparation of immobilized enzymes which were shown to be of considerable use as heterogeneous biocatalysts in the chemical and pharmaceutical industry. Interest in the biological and physicochemical characteristics of poly-α-amino acids was recently renewed because of the reported novel findings that some copolymers of amino acids are effective as drugs in multiple sclerosis, and that glutamine repeats and reiteration of other amino acids occur in inherited neurodegenerative diseases.  相似文献   

20.
Mast cells play pivotal roles in allergic and inflammatory processes via distinct activation pathways. Mucosal and serosal mast cells are activated by the IgE/FcɛRI pathway, while only serosal mast cells are activated by basic secretagogues. We show that CD47 receptors are expressed on rat peritoneal mast cells. 4N1K, a peptide agonist of CD47, rapidly caused exocytosis. Such exocytosis required increased intracellular calcium and was inhibited by pertussis toxin and an antibody against the βγ dimer of a Gi protein. Cooperation with integrins and glycosylphosphatidylinositol-anchored proteins was necessary, since anti-integrin antibodies and pretreatment with phosphatidylinositol-phospholipase C reduced exocytosis. Depletion of membrane cholesterol inhibited exocytosis and decreased CD47 in lipid rafts, consistent with a CD47/integrin/Gi protein complex being located in rafts. An anti-CD47 antibody inhibited exocytosis induced by 4N1K and by mastoparan and spermine, suggesting that basic secretagogues might target CD47. We propose that 4N1K-stimulated mast cell exocytosis involves a CD47/integrin/Gi protein complex. Received 8 December 2008; received after revision 12 January 2009; accepted 29 January 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号