共查询到18条相似文献,搜索用时 62 毫秒
1.
为探讨Ti3SiC2的生长机制,以Ti、Si、C元素粉末为原料,采用三种不同的真空烧结工艺,制备体积分数为89.12%、85.90%及93.01%的Ti3SiC2材料,并利用XRD和SEM对其进行组织结构分析。结果表明:Ti3SiC2晶体生长为台阶机制,在母层片的法线方向不受约束的情况下形成梯田形貌;在生长母层面的法线方向受到约束的情况下,Ti3SiC2的生长台阶被逐渐填满,形成晶型较完整的Ti3SiC2;在以Ti、Si、C粉末为原料制备Ti3SiC2时,在略高于1 300℃的温度进行长时间保温是有利的。 相似文献
2.
3.
针对钛基复合材料中增强相易团聚的问题,采用固溶加时效的热处理工艺对其组织进行优化,研究了Ti3SiC2含量对材料微观组织及力学性能的影响。通过扫描电子显微镜和能谱分析仪观测了不同Ti3SiC2含量的复合材料的微观组织形貌,并探究热处理过程中基体组织的细化机制与增强相的析出规律,进而分析了室温力学性能的变化规律。实验结果表明:随着Ti3SiC2含量的增加,固溶处理后的原始晶粒尺寸大幅度减小,时效处理后的片状α相和团簇组织的平均尺寸也呈递减趋势;Ti5Si3颗粒在β相内、α/β相界处和α相内均有析出,其含量随Ti3SiC2质量分数增加而递增;(Ti5Si3+TiC)/TC4复合材料的屈服强度和抗压强度均明显高于相同热处理条件下的基体TC4合金,当Ti3SiC2的质量... 相似文献
4.
通过着重研究 Mo Si2 与 4 5钢对摩时的干摩擦磨损性能 ,在扫描电子显微镜 (SEM)下观察了磨损表面的形貌 ,分析了其摩擦磨损机理 .结果表明 :随 Si O2 氧化膜的产生与剥落 ,摩擦系数随摩擦行程的延长呈不规则变化 ;Mo Si2 材料表现出优良的耐磨性能 ,其稳定磨损率小于 0 .0 4 g/ km.随着磨损载荷的增大 ,摩擦机理主要从微观滑移、塑性变形转变为粘着效应 ;磨损机理主要从磨粒磨损、氧化疲劳磨损转变为粘着磨损 .图 8,参 1 相似文献
5.
采用SPS方法制备出SiC和Ti3SiC2双相增强Al基复合材料,并在MM-200型摩擦磨损实验机上进行干摩擦试验。研究了不同含量SiC对Ti3SiC2/Al复合材料组织及耐磨性的影响,结果表明,颗粒体积分数及磨损载荷对复合材料摩擦磨损特性有显著影响。复合材料具有良好的摩擦磨损性能,烧结温度为550℃,SiC的体积分数从0.5%上升到2%时,复合材料的摩擦系数从0.34降到0.285,降低16.2%。烧结温度为400℃,SiC的体积分数从0.5%上升到2%时,复合材料的磨损量从0.0079降到0.0039,降低50.63%。 相似文献
6.
利用盘块式高速摩擦试验机,在滑动速度为20 m/s、法向载荷范围为0.2~0.8 MPa的条件下,试验研究了高纯度钛硅碳Ti3SiC2材料及含碳化钛TiC的Ti3SiC2材料的摩擦与磨损行为.两种材料的摩擦系数随着压力的增大都呈现出先增加后平缓减小的趋势,高纯度Ti3SiC2材料的磨损率随着压力的增加呈减小趋势,而含TiC的Ti3SiC2材料的磨损率随着压力增加呈先减小后增加的趋势.扫描电镜(SEM)和X-射线衍射(XRD)的观察和分析结果表明,在Ti3SiC2的摩擦表面有摩擦生成氧化层的存在.该氧化层具有降低摩擦系数和磨损率的自润滑作用. 相似文献
7.
不同刹车压力下C/C复合材料的摩擦磨损性能 总被引:6,自引:0,他引:6
研究了粗糙层和光滑层2种不同热解炭与树脂炭混合基体炭/炭复合材料在不同制动压力下的摩擦磨损性能,且对摩擦表面与磨屑进行了SEM观察和分析,并采用X射线衍射与激光喇曼光谱测定了在不同刹车压力下摩擦表面的石墨化度.研究结果表明:C/C复合材料的摩擦因数由摩擦表面所形成的摩擦膜所决定,随着刹车压力的增大,摩擦膜更完整平滑,摩擦因数呈降低趋势,磨损则随刹车压力的增大而呈增大趋势;粗糙层结构C/C复合材料即使在高制动压力下,仍能具有较高的摩擦因数,显示出优良的高压摩擦性能;高压下摩擦表面会发生应力石墨化作用,这是高压下摩擦因数下降的原因之一. 相似文献
8.
Microstructure and properties of Ag–Ti3SiC2 contact materials prepared by pressureless sintering 下载免费PDF全文
Min Zhang Wu-bian Tian Pei-gen Zhang Jian-xiang Ding Ya-mei Zhang Zheng-ming Sun 《矿物冶金与材料学报》2018,25(7):810-816
Ti3SiC2-reinforced Ag-matrix composites are expected to serve as electrical contacts. In this study, the wettability of Ag on a Ti3SiC2 substrate was measured by the sessile drop method. The Ag–Ti3SiC2 composites were prepared from Ag and Ti3SiC2 powder mixtures by pressureless sintering. The effects of compacting pressure (100–800 MPa), sintering temperature (850–950℃), and soaking time (0.5–2 h) on the microstructure and properties of the Ag–Ti3SiC2 composites were investigated. The experimental results indicated that Ti3SiC2 particulates were uniformly distributed in the Ag matrix, without reactions at the interfaces between the two phases. The prepared Ag–10wt%Ti3SiC2 had a relative density of 95% and an electrical resistivity of 2.76×10-3 mΩ·cm when compacted at 800 MPa and sintered at 950℃ for 1 h. The incorporation of Ti3SiC2 into Ag was found to improve its hardness without substantially compromising its electrical conductivity; this behavior was attributed to the combination of ceramic and metallic properties of the Ti3SiC2 reinforcement, suggesting its potential application in electrical contacts. 相似文献
9.
利用冷压烧结的方法制备不同含量和不同粒径的SiC颗粒填充聚四氟乙烯(PTFE)复合材料,用M-200环块摩擦磨损试验机进行试验,研究SiC颗粒增强PTFE复合材料在干摩擦状态下的摩擦磨损特性,并且用电子扫描显微镜对复合材料的磨损表面形貌进行观测,对复合材料的磨损机制进行理论分析。此外,还比较了使用和不使用耦联剂对颗粒进行处理的实验对比。结果显示:SiC增强PTFE复合材料耐磨性能有了明显的提高。含量的增加使得耐磨性增强,摩擦系数增大;粒径的增大使得耐磨性降低,摩擦系数增大。比较而言,纳米SiC对PTFE摩擦磨损性能的改进最好。 相似文献
10.
使用立式万能摩擦磨损试验机研究铜箔在无润滑、水润滑、基础油和CFO润滑油条件下的摩擦磨损行为以及接触压力和铜箔厚度对摩擦副摩擦磨损特性的影响。结果表明,在无润滑、水润滑、基础油和CFO润滑油介质下,接触压力为0.15MPa、转速为100r/min时,铜箔平均摩擦系数分别为0.572、0.457、0.274、0.205,基础油和CFO润滑油具有显著的润滑效果;摩擦系数随接触压力的增大而减小,磨损率随接触压力的增大而增大,磨损率在接触压力为0.3MPa附近存在明显的上升折点。 相似文献
11.
12.
张俊才 《黑龙江科技学院学报》2005,15(1):20-23
为改善Ti3SiC2的合成条件,利用机械合金化的方法处理原料粉末,并与通常采用的原始粉末直接混合粉末进行比较分析。结果表明,机械合金化有助于合成Ti3SiC2。根据DTA曲线确定合理的烧结工艺,对合成产物进行的XRD、断口的SEM以及EDAX分析,进一步证实了机械合金化粉末可以在较低的温度下(温度降低25℃)、较短的时间(时间缩短20%)内通过反应合成得到Ti3SiC2。 相似文献
13.
高纯Ti3SiC2块体的热压原位合成及性能研究 总被引:1,自引:0,他引:1
以Ti、Si和石墨粉为原料,以少量的Al为反应助剂,用反应热压(HP)工艺在1 450 ℃和25MPa下2 h制得纯度为97%、相对密度为98.45%、粒度为5~10 μm的Ti3SiC2多晶块体.其弯曲强度为407 MPa、室温电阻率为0.22×10-6 Ω·m、维氏硬度为3.97 GPa.与Barsoum和Ei-Raghy在1 600 ℃和40 MPa下烧结4 h获得的样品相比,本样品显示了较低的弯曲强度,基本相同的纯度、电阻率和硬度. 相似文献
14.
选用单质粉(Ti,Si,C,Al)为原料,采用机械合金化法制备含有Ti3SiC2和TiC的混合粉体,然后将Ti3SiC2,TiC和Cu的混合粉体进行放电等离子烧结,以制备Cu/Ti3SiC2-TiC复合材料,并对其组织耐磨性进行了研究。实验结果表明,放电等离子烧结可制备致密的Cu/Ti3SiC2-TiC复合材料,复合材料的显微硬度随强化相(Ti3SiC2-TiC)掺加量的增加显著提高,当强化相掺加量为20 vol%时,复合材料的硬度值达1.58 GPa。Cu/Ti3SiC2-TiC复合材料的耐磨性随强化相含量增加显著提高,当强化相掺入量为20 vol%时,复合材料的耐磨性为纯Cu的4倍。 相似文献
15.
Al_2O_3/SiC纳米陶瓷复合材料的制备及力学性能 总被引:9,自引:0,他引:9
采用一次粒径分别为10nm和15nm的αAl2O3和SiC粉体为原料,制备了Al2O3/SiC纳米陶瓷复合材料·纳米SiC颗粒明显抑制Al2O3基体晶粒的长大,SiC体积分数超过4%时,材料的断裂方式由沿晶断裂变为穿晶断裂·随SiC含量的增加,Al2O3/SiC纳米复合材料的硬度增大·材料的弯曲强度和断裂韧性在SiC体积分数为5%时达到最大值·最大三点弯曲强度和断裂韧性分别为641MPa和47MPam1/2,明显高于热压单相Al2O3陶瓷(344MPa和31MPam1/2)·复合材料的强化主要来源于内晶颗粒残余应力强化和晶粒细化... 相似文献
16.
研究了高纯度多晶块体Ti3SiC2高速摩擦特性及摩擦氧化行为.实验在盘-块式高速摩擦试验机上进行,以低碳钢为对磨体,温度25℃,相对湿度23%~25%,滑动速度20~50m/s,法向压强0.1~0.8MPa.结果表明,摩擦系数随滑动速度的提高而减小,而在给定的滑动速度下随法向压强的增大先增大后减小,在40~50m/s的滑动速度和0.8MPa的法向压强下达到最小值0.17.摩擦系数的减小归因为Ti3SiC2表面摩擦氧化层的存在.该氧化层由Ti、Si和Fe的氧化物组成,具有显著的减摩作用. 相似文献
17.
张俊才 《黑龙江科技学院学报》2009,19(2):113-116
针对原有Ti3SiC2的制备方法存在烧结温度高、工艺控制困难的问题,以Ti、Si、C三元粉末为原料,分别采用普通混料和机械合金化对原料粉末进行混合,对混合后的粉末进行XRD、TEM和DTA分析,从而确定合成Ti3SiC2的真空热压工艺,并对经热压制备的材料进行组织结构分析。结果表明:机械合金化能降低合成Ti3SiC2的反应温度,使合成Ti3SiC2的过程更加充分,热压后的烧结体组织更加均匀,几乎没有成分偏析。 相似文献
18.
在室温、无润滑的条件下,利用销盘式摩擦磨损实验考察了SiC与不锈钢(1Cr18Ni9Ti)组成摩擦副的摩擦磨损特性,SiC在5 N和20 N载荷作用下磨损机制为脆性分层磨损.SiC随载荷增加摩擦系数减少,但磨损率随载荷增加而增加.结果表明,SiC与不锈钢对磨时,磨损率达10-4mm3/(N.m)-1数量级,属磨损剧烈,不适合组成摩擦副. 相似文献