首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The mechanical properties of dental composites were improved by porous diatomite and nano-sized silica (OX-50) used as co-fillers.The resin composites,filled with silanized OX-50 and silanized diatomit...  相似文献   

2.
We developed an one-step hydrothermal method to synthesize carbon-nitrogen quantum dots(CNQDs) with oxygen-rich functional groups.The sample was characterized by TEM,AFM,FT-IR,XPS,UV-vis absorption and PL spectra.The 0/C and N/C atomic ratio of typical CNQDs with diameters of 3-6 nm are ca.0.4 and 0.2,respectively.Without noble metal cocatalyst,the photocatalytic H_2 production rate of CNQDs/TiO_2 nanofibers(NFs)(112.4 μmol h~(-1) g~(-1)) is 1.8 times higher than that of TiO_2 NFs.The good absorption of light contributes to the enhanced photocatalytic H_2 performance.The CNQDs could be promising in biomedical imaging,optical data recording storage and photo/electrocatalysis,etc.  相似文献   

3.
General strategies are proposed by passivated co-doping in present paper to improve the photocatalytic activity of semiconductors for degradation of environmental pollutants.The ideal band gap of semiconductors for enhancement of photocatalytic activity can be lowered to match with visible light absorption and the location of the Conduction Band(CB) should be raised to meet the reducing capacity.Then we apply the strategy to anatase TiO2.It is predicted that nonmetal–metal co-doping TiO2can modify the catalyst band edges by raising the valence band(VB) edge signifcantly and making the CB edge increased 0.24 eV.Therefore,the band gap for co-doping system should be narrowed to about2.72 eV.(N,Ta) is predicted to be the target donor–acceptor combination with the band gap of 2.71 eV,which red-shifts the TiO2absorption edge to 457.6 nm in visible range.The band engineering principle will be ft to other wide-band-gap semiconductors for enhanced photocatalytic activity.  相似文献   

4.
A porous Co_3O_4 with a particle size of 1–3 μm was successfully prepared by heating Co-based metal organic frameworks MOF-74(Co) up to 500 °C in air atmospheric conditions. The as-prepared porous Co_3O_4 significantly reduced the dehydrogenation temperatures of the LiBH_4-2LiNH_2 system and improved the purity of the released hydrogen. The LiBH_4-2LiNH_2-0.05/3Co_3O_4 sample started to release hydrogen at 140 °C and released hydrogen levels of approximately 9.7 wt% at 225 °C. The end temperature for hydrogen release was lowered by 125 °C relative to that of the pristine sample. Structural analyses revealed that the as-prepared porous Co_3O_4 is in-situ reduced to metallic Co, which functions as an active catalyst, reducing the kinetic barriers and lowering the dehydrogenation temperatures of the LiBH_4-2LiNH_2 system. More importantly, the porous Co_3O_4-containing sample exhibited partially improved reversibility for hydrogen storage in the LiBH_4-2LiNH_2 system.  相似文献   

5.
A process to fabricate a kind of novel micro–nano scaled TiO2/CuS composite fibers by electrospinning technique and chemical precipitation method was developed in the present study. The microstructures and photoelectronic properties of the fibers were characterize d using SEM, FT-IR, UV–vis and fluorescence spectroscopy. The results revealed that the TiO2 portion in the composite fibers was a mixture rutile and anatase phases while TiO2 and CuS had been fully composite. The fibers had smooth surface with a diameter of 50–300 nm. Comparing with pure TiO2 fiber, the TiO2/CuS micro–nano-scaled composite fibers exhibited a strong absorption in the visible light region and the efficiency of photo-induced charge separation were enhanced. This composite system is of widely potential applications in the areas such as solar cells, supercapacity, photocatalysis, etc.  相似文献   

6.
Al2O3 –TiC/TiCN–Fe composite powders were successfully prepared directly from ilmenite at 1300–1400℃.The effects of Al/C ratio,sintering atmosphere,and reaction temperature and time on the reaction products were investigated.Results showed that the nitrogen atmosphere was bene cial to the reduction of ilmenite and the formation of Al2O3 –TiC/TiCN–Fe composite powders.When the reaction temperature was between 600 and 1100℃,the intermediate products,TiO2,Ti3O5 and Ti4O7 were found,which changed to TiC or TiCN at higher temperature.Al/C ratio was found to affect the reaction process and synthesis products.When Al addition was 0.5 mol,the Al2O3 phase did not appear.The content of carbon in TiCN rose when the reaction temperature was increased.  相似文献   

7.
La_(0.5)Cr_(0.5)TiO_(3+δ) ceramic sample was prepared via traditional solid-state reaction route. Frequency and temperature dependence of dielectric permittivity were studied in the range of 10~2~ 10~6 Hz and of 77 ~360 K, respectively. It was observed that extraordinarily high low-frequency dielectric constants appeared at room temperature, and dielectric relaxation peaks shifted to higher temperature with increasing frequency. In the dc-bias studies, it was also found that the dielectric permittivity had obviously dc-bias dependence in low frequency, but independence as the frequency above 14 kHz. Interestingly, the dielectric characteristics of the sample had obvious light dependence at room temperature within the measured frequency range. The results demonstrate that visible light improves the dielectric properties of the ceramic by means of I–V and complex impedance analysis.  相似文献   

8.
The effect of B2O3 addition on the aqueous tape casting, sintering, microstructure and microwave dielectric properties of Li2O-Nb2O5-TiO2 ceramics has been investigated. The tape casting slurries exhibit a typical shear-thinning behavior without thixotropy, but the addition of B2O3 increases the viscosity of the slurries significantly. It was found that doping of B2O3 can decrease the tensile strength, strain to failure and density of the green tapes. The sintering temperature could be lowed down to 900℃ with the addition of 2 wt% B2O3 due to the liquid phase effect. No secondary phase is observed. The addition of B2O3 does not induce much degradation on the microwave dielectric properties. Optimum microwave dielectric properties of εr 67, Q×f 6560 GHz are obtained for Li2O-Nb2O5-TiO2 ceramics containing 2 wt% B2O3 sintered at 900 1C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) application.  相似文献   

9.
The surface characteristics of an implant that influence the speed and strength of osseointegration include crystal structure and bioactivity. The aim of this study was to evaluate the bioactivity of a novel natural hydroxyapatite/zircon(NHA/zircon) nanobiocomposite coating on 316L stainless steel(SS) dental implants soaking in simulated body fluid. A novel NHA/zircon nanobiocomposite was fabricated with 0(control),5, 10, and 15 wt% of zircon in NHA using ball mill for 1 h. The composite mixture was coated on SS implants using a plasma spray method.Scanning electron microscopy(SEM) was used to evaluate surface morphology, and X-ray diffraction(XRD) was used to analyze phase composition and crystallinity(Xc). Further, calcium ion release was measured to evaluate the coated nanobiocomposite samples. The prepared NHA/zircon coating had a nanoscale morphological structure with a mean crystallite size of 30–40 nm in diameter and a bone-like composition,which is similar to that of the biological apatite of a bone. For the prepared NHA powder, high bioactivity was observed owing to the formation of apatite crystals on its surface. Both minimum crystallinity(Xc=41.1%) and maximum bioactivity occurred in the sample containing 10 wt% of zircon because of minimum Xcand maximum biodegradation of the coating sample.  相似文献   

10.
Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd_2O_3-4.5 mol% Y_2 O_3-ZrO_2(2 GdYSZ) topcoat using air plasma spraying(APS). Hot corrosion behavior of the as-sprayed thermal barrier coatings(TBCs) were investigated in the presence of 50 wt%Na_2SO_4 + 50 wt% V_2O_5 as the corrosive molten salt at 900 ℃ for 100 h. The analysis results indicate that Gd doped YVO_4 and m-ZrO_2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers(Y_2O_3, Gd_2O_3) of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO_2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.  相似文献   

11.
The 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) powder had three particle size distributions, while the fine one was lower than 100 nm. The 3Y-TZP compact was prepared by dry-pressing under pressures ranged from 10 to 30 MPa and then presintered at 1250°C for 2 h. The matrix dry-pressed under the pressure of 20 MPa had a porosity of 16.7% and could be easily processed by computer aided design and computer aided manufacturing (CAD/CAM), and which had been infiltrated by the La2O3–Al2O3–SiO2 glass at 1200°C for 4 h. The flexural strength and fracture toughness of the composite were 710.7 MPa and 6.51 MPa m1/2, respectively. The low shrinkage (0.3%) of the composite can satisfy the net-shape fabrication standard. XRD results illustrated that zirconia in the La2O3–Al2O3–SiO2 glass-infiltrated 3Y-TZP all-ceramic composite was mainly in the tetragonal phase. SEM and EDS results indicated that the pores of the matrix were almost filled by the La2O3–Al2O3 –SiO2 glass  相似文献   

12.
In order to improve the anti-oxidation of C/C composites, a SiC–MoSi2multi-phase coating for SiC coated carbon/carbon composites(C/C)was prepared by low pressure chemical vapor deposition(LPCVD) using methyltrichlorosilane(MTS) as precursor, combined with slurry painting from MoSi2 powder. The phase composition and morphology were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) methods, and the deposition mechanism was discussed. The isothermal oxidation and thermal shock resistance were investigated in a furnace containing air environment at 1500 1C. The results show that the as-prepared SiC–MoSi2coating consists of MoSi2 particles as a dispersing phase and CVD–SiC as a continuous phase. The weight loss of the coated samples is 1.51% after oxidation at 1500 1C for 90 h, and 4.79% after 30 thermal cycles between 1500 1C and room temperature. The penetrable cracks and cavities in the coating served as the diffusion channel of oxygen, resulted in the oxidation of C/C composites, and led to the weight loss in oxidation.  相似文献   

13.
The piezoelectric properties of [Ba(Zr_(0.2)Ti_(0.8))O_3]–0.5(Ba_(0.7)Ca_(0.3)TiO_3)(abbreviated as BZT-0.5BCT) thin films deposited on Pt/Ti/SiO_2/Si substrates are reported in the present investigation. The effect of the distances between the target and substrate(d) on the morphology and out-of-plane piezoelectric properties was investigated.The experimental results showed that the ferroelectric domains size was dependent on the distance between the substrate and target and the ferroelectric domain growth was constrained by the grains. The samples exhibited well-defined out-of-plane butterfly loops and hysteresis loops and the one with d of 6.5 cm possessed the optimal ferroelectric properties and it exhibited good in-plane piezoelectric properties.  相似文献   

14.
The surface silanization was carried out on ultrasonic micro-arc oxidation(UMAO) coatings on pure magnesium using KH550 as silane coupling agent(SCA). The surface morphology, chemical bonds and corrosion resistance of the silane films were investigated by scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FTIR) and electrochemical workstation, respectively. The results showed that hybrid coatings were successfully prepared on pure magnesium by UMAO-Na OH(1 mol/L, 2 mol/L, 3 mol/L)-SCA processing. The organic films with Si–O–Mg bonds are helpful for the reduction of the pores in UMAO coatings. The pores decreased with increasing Na OH concentration. Compared with single UMAO treatment, the corrosion potentials(Ecorr) of magnesium plates with UMAO-Na OH(1 mol/L,2 mol/L, 3 mol/L)-SCA treatment increased by 29 m V, 53 m V and 75 m V, respectively, meanwhile the corrosion current density(Icorr) reduced one to two orders of magnitude. It indicated that the corrosion resistance of the coatings was improved by silane treatment.  相似文献   

15.
In this article Fischer–Tropsch(FT) synthesis was studied over cobalt nanoparticles supported on modifed Montmorillonite(Zr-PILC).Co-loaded/Zr-PILC catalysts were synthesized by hydrothermal methods and were characterized by XRD,XRF,BET,H2-TPR,TGA and SEM techniques.FT reactions were carried out in fxed bed microreactor(T 225 1C,260 1C and 275 1C,P 1,5 and 10 bars).The FT-products obtained over Co-loaded/Zr-PILC catalysts showed increased selectivity of C2–C12hydrocarbons and decreased selectivity towards CH4and higher molecular weight hydrocarbons(C21) at a TOS of 2–30 h as compared to the Co-loaded/NaMMT catalysts.With increase in reaction temperature from225 1C to 275 1C,CO-conversion and CH4selectivity increases while that of C5+hydrocarbons decreases.Decrease in CH4selectivity while increase in C5+hydrocarbons and CO-conversion were observed on increasing the pressure of reaction.  相似文献   

16.
The composition characteristics of maraging stainless steels were studied in the present work investigation using a cluster-plus-glue-atom model. The least solubility limit of high-temperature austenite to form martensite in basic Fe–Ni–Cr corresponds to the cluster formula [NiFe12]Cr3,where NiFe12is a cuboctahedron centered by Ni and surrounded by 12 Fe atoms in FCC structure and Cr serves as glue atoms. A cluster formula [NiFe12](Cr2Ni) with surplus Ni was then determined to ensure the second phase(Ni3M) precipitation,based on which new multicomponent alloys [(Ni,Cu)16Fe192](Cr32(Ni,Mo,Ti,Nb,Al,V)16) were designed. These alloys were prepared by copper mould suction casting method,then solid-solution treated at 1273 K for 1 h followed by water-quenching,and finally aged at 783 K for 3 h. The experimental results showed that the multi-element alloying results in Ni3M precipitation on the martensite,which enhances the strengths of alloys sharply after ageing treatment. Among them,the aged [(Cu4Ni12)Fe192](Cr32(Ni8.5Mo2Ti2Nb0.5Al1V1)) alloy(Fe74.91Ni8.82Cr11.62Mo1.34Ti0.67Nb0.32Al0.19V0.36Cu1.78wt%) has higher tensile strengths with YS?1456 MPa and UTS?1494 MPa. It also exhibits good corrosion-resistance in 3.5 wt% NaCl solution.  相似文献   

17.
The ternary magnesium hydride NaMgH 3 has been synthesised via reactive milling techniques.The method employed neither a reactive H2 atmosphere nor high pressure sintering or other post-treatment processes.The formation of the ternary hydride was studied as a function of milling time and ball:powder ratio.High purity NaMgH 3 powder(orthorhombic space group Pnma,a 5.437(2),b 7.705(5),c 5.477(2) ;Z 4) was prepared in 5 h at high ball:powder ratios and characterised by powder X-ray diffraction(PXD),Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDX).The products formed sub-micron scale(typically 200-400 nm in size) crystallites that were approximately isotropic in shape.The dehydrogenation behaviour of the ternary hydride was investigated by temperature programmed desorption(TPD).The nanostructured hydride releases hydrogen in two steps with an onset temperature for the first step of 513 K.  相似文献   

18.
A low cost chemical co-precipitation method was employed to fabricate nanoscale Al_2O_3-GdAlO_3-ZrO_2 powder with eutectic composition. A careful control of reaction conditions was required during the preparation. The synthesized nanopowders exhibited a particle size of 20-200 nm, and were highly dispersive and uniform. The results showed that calcination temperature had an important influence on the phase constituents of the nanopowders. With increasing the calcination temperature, a phase transformation from θ-Al_2O_3 to α-Al_2O_3 and a thermal decomposition from Gd_3 Al_5O_(12)(GdAG) to GdAlO_3 and α-Al_2O_3 occurred in sequence. A calcination temperature of 1300 ℃ was needed for the crystallization of α-Al_2 O_3. These nanosized powders were consolidated via hot pressing to produce a fully densified ceramic composite with eutectic composition. The Al_2O_3-GdAlO_3-ZrO_2 ceramic hot-pressed at 1500 ℃ exhibited a relative density of 99.4%, a flexural strength of 485 MPa and a fracture toughness of 6.5 MPa m~(1/2). The ceramic had a thermal conductivity of 1.9 W m K~(-1) at 1200 ℃ and a thermal expansion coefficient of 9.49 ×10~(-6) K~(-1) at 1100 ℃.  相似文献   

19.
Rare earth oxides doping has been extensively investigated as one of the effective methods to lower thermal conductivity of 4.55 mol% Y2O3stabilized ZrO2(YSZ) thermal barrier coatings(TBCs).In the present work,5–6 mol% Yb2O3and Y2O3co-doped ZrO2ceramics were synthesized by solid reaction sintering at 1600 1C.The phase stability of the samples after heat treatment at 1500 1C was investigated.Yb2O3and Y2O3co-doped zirconia,especially when Yb2O3/Y2O3≥1,contained less monoclinic phase than single Yb2O3or Y2O3phase doped zirconia,indicating that co-doped zirconia was more stable at high temperature than YSZ.The thermal conductivity of the 3 mol% Yb2O3+3 mol% Y2O3co-doped ZrO2was 1.8 W m 1K 1at 1000 1C,which was more than 20% lower than that of YSZ.  相似文献   

20.
The wettability of V-active PdCo-based alloys on Si3N4ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6(wt%),was developed for Si3N4ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4joints brazed at 1453 K for 10 min was 205.6 MPa,and the newly developed braze gives joint strengths of 210.9 MPa,206.6 MPa and 80.2 MPa at high temperatures of 973 K,1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4joint brazed at 1453 K for10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result,the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases,in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号