首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C T Denny  Y Yoshikai  T W Mak  S D Smith  G F Hollis  I R Kirsch 《Nature》1986,320(6062):549-551
Specific chromosomal aberrations are associated with specific types of cancer (for review see ref. 1). The distinctiveness of each association has led to the belief that these chromosomal aberrations are clues to oncogenic events or to the state of differentiation in the malignant cell type. Malignancies of T lymphocytes demonstrate such an association characterized most frequently by structural translocations or inversions of chromosomes 7 and 14 (refs 7-9). Analyses of these chromosomally marked tumours at the molecular level may therefore provide insight into the aetiology of the cancers as well as the mechanisms by which chromosomes break and rejoin. Here we report such an analysis of the tumour cell line SUP-T1 derived from a patient with childhood T-cell lymphoma carrying an inversion of one chromosome 14 between bands q11.2 and q32.3, that is, inv(14) (q11.2; q32.2). These are the same chromosomal bands to which the T-cell receptor alpha-chain (14q11.2) and the immunoglobulin heavy-chain locus (14q32.3) have been assigned. Our analysis reveals that this morphological inversion of chromosome 14 was mediated by a site-specific recombination event between an immunoglobulin heavy-chain variable region (Ig VH) and a T-cell receptor (TCR) alpha-chain joining segment (TCR J alpha). S1 nuclease analysis shows that this hybrid gene is transcribed into poly(A)+ RNA.  相似文献   

2.
The human T-cell receptor alpha-chain gene maps to chromosome 14   总被引:7,自引:0,他引:7  
The T-cell receptor for antigen has been identified as a disulphide-linked heterodimeric glycoprotein of relative molecular mass (Mr) 90,000 comprising an alpha- and a beta-chain. The availability of complementary DNA clones encoding mouse and human beta-chains has allowed a detailed characterization of the genomic organization of the beta-chain gene family and has revealed that functional beta-chain genes in T cells are generated from recombination events involving variable (V), diversity (D), joining (J) and constant (C) gene segments. Recently, cDNA clones encoding mouse and human alpha-chains have been described; the sequences of these clones have indicated that functional alpha-chain genes are also generated from multiple gene segments. It is possible that chromosomal translocations involving T-cell receptor alpha- and beta-chain genes have a role in T-cell neoplasms in much the same way as translocations involving immunoglobulin genes are associated with oncogenic transformation in B cells. In the latter case, the chromosomal localization of the immunoglobulin genes provided one of the first indications of the involvement of such translocations in oncogenic transformation. The chromosomal assignment of the alpha- and beta-chain genes may, therefore, provide equally important clues for T-cell neoplastic transformation. The chromosomal location of the mouse and human beta-chain gene family has been determined: the murine gene lies on chromosome 6 (refs 12, 13) whereas the human gene is located on chromosome 7 (refs 13, 14). Here we use a cDNA clone encoding the human alph-chain to map the corresponding gene to chromosome 14.  相似文献   

3.
Y Tsujimoto  E Jaffe  J Cossman  J Gorham  P C Nowell  C M Croce 《Nature》1985,315(6017):340-343
The t(11;14) (q13;q32) chromosome translocation has been reported in diffuse small and large cell lymphomas and in chronic lymphocytic leukaemia (B-CLL) and multiple myeloma. Because chromosome band 14q32 is involved in this translocation, as well as in the t(8;14) (q24;q32) translocation of the Burkitt tumour, interruption of the immunoglobulin heavy-chain locus was postulated for this rearrangement. We have cloned the chromosomal joinings between chromosomes 11 and 14 and also between chromosomes 14 and 18, in B-cell tumours carrying translocations involving these chromosomes, and suggested the existence of two translocated loci, bcl-1 and bcl-2, normally located on chromosomes 11 (band q13) and 18 (band q21) respectively, involved in the pathogenesis of human B-cell neoplasms. The results indicate that in the leukaemic cells from two different cases of CLL, the breakpoints on chromosome 11 are within 8 nucleotides of each other and on chromosome 14 involve the J4-DNA segment. Because we detected a 7mer-9mer signal-like sequence with a 12-base-long spacer on the normal chromosome 11, close to the breakpoint, we speculate that the t(11;14) chromosome translocation in CLL may be sequence specific and may involve the recombination system for immunoglobulin gene segment (V-D-J) joining.  相似文献   

4.
Non-random tumour-specific chromosomal abnormalities have been observed in cells of many different human tumours. In Wilms' tumour (WT) and retinoblastoma, a chromosomal deletion occurs germinally or somatically and has been considered an important step in tumour development. One class of potential cellular transforming genes comprises the cellular homologues of the transforming genes of highly oncogenic retroviruses. A remarkable concordance between the chromosomal location of human cellular oncogenes and the breakpoints involved in acquired chromosomal translocations is becoming apparent in various cancers: the oncogenes c-mos, c-myc and c-abl are located at the breakpoints that occur in acute myeloblastic leukaemia, Burkitt's lymphoma and chronic myelocytic leukaemia respectively. Thus when the oncogene c-Ha-ras1 was localized to the short arm of human chromosome 11 (refs 6-8; region 11p11 leads to p15 and not 11p13 as stated in ref. 5), it was proposed as a possible aetiological agent in the aniridia-WT association (AWTA) that results from a deletion of 11p13 (although a transforming gene recently isolated from a WT cell line (G401) was shown not to be homologous to either c-Ha-ras or c-Ki-ras9). We have now looked for deletion or rearrangement of c-Ha-ras1 in the DNA from four subjects with del(11p13)-associated predisposition to Wilms' tumour, aniridia, genitourinary abnormalities and mental retardation. We report here that in no case is c-Ha-ras1 deleted, and we have further refined its location to 11p15.1 leads to 11p15.5. On the basis of enzyme studies and direct gene dosage determination for c-Ha-ras1 and beta-globin in neoplastic and non-neoplastic tissues from one patient, we conclude that deletion of the normal counterpart of 11p cannot account for the development of the tumour.  相似文献   

5.
One in 10,000 children develops Wilms' tumour, an embryonal malignancy of the kidney. Although most Wilms' tumours are sporadic, a genetic predisposition is associated with aniridia, genito-urinary malformations and mental retardation (the WAGR syndrome). Patients with this syndrome typically exhibit constitutional deletions involving band p13 of one chromosome 11 homologue. It is likely that these deletions overlap a cluster of separate but closely linked genes that control the development of the kidney, iris and urogenital tract (the WAGR complex). A discrete aniridia locus, in particular, has been defined within this chromosomal segment by a reciprocal translocation, transmitted through three generations, which interrupts 11p13. In addition, the specific loss of chromosome 11p alleles in sporadic Wilms' tumours has been demonstrated, suggesting that the WAGR complex includes a recessive oncogene, analogous to the retinoblastoma locus on chromosome 13. In WAGR patients, the inherited 11p deletion is thought to represent the first of two events required for the initiation of a Wilms' tumour, as suggested by Knudson from epidemiological data. We have now isolated the deleted chromosomes 11 from four WAGR patients in hamster-human somatic cell hybrids, and have tested genomic DNA from the hybrids with chromosome 11-specific probes. We show that 4 of 31 markers are deleted in at least one patient, but that of these markers, only the gene encoding the beta-subunit of follicle-stimulating hormone (FSHB) is deleted in all four patients. Our results demonstrate close physical linkage between FSHB and the WAGR locus, suggest a gene order for the four deleted markers and exclude other markers tested from this region. In hybrids prepared from a balanced translocation carrier with familial aniridia, the four markers segregate into proximal and distal groups. The translocation breakpoint, which identifies the position of the aniridia gene on 11p, is immediately proximal to FSHB, in the interval between FSHB and the catalase gene.  相似文献   

6.
M M Le Beau  C A Westbrook  M O Diaz  J D Rowley  M Oren 《Nature》1985,316(6031):826-828
Recent studies have demonstrated that the cellular tumour antigen p53 (ref. 1) can complement activated ras genes in the transformation of rat fibroblasts, suggesting that the gene encoding p53 may act as an oncogene. Here, by using in situ chromosomal hybridization, we have mapped the p53 gene to human chromosome 17, at bands 17q21-q22, the region containing one of the breakpoints in the translocation t(15;17) (q22;q21) associated with acute promyelocytic leukaemia (APL). Hybridization of p53 and erb-A (17q11-q12) probes to malignant cells from three APL patients indicated that the p53 gene is translocated to chromosome 15 (15q+), whereas erb-A remains on chromosome 17. Analysis of variant translocations demonstrates that the 15q+ chromosome contains the conserved junction, suggesting a role for p53 in the pathogenesis of APL. However, rearrangements of the p53 gene were not detected on Southern blotting of DNA from leukaemic cells of four APL patients with t(15;17).  相似文献   

7.
Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer   总被引:15,自引:0,他引:15  
S L Naylor  B E Johnson  J D Minna  A Y Sakaguchi 《Nature》1987,329(6138):451-454
Specific chromosomal deletions sometimes associated with tumours such as retinoblastoma (chromosome 13q14) and Wilm's tumour (chromosome 11p13) have led to the hypothesis that recessive genes may be involved in tumorigenesis. This hypothesis is supported by demonstration of allele loss specific for these regions using polymorphic DNA markers and by the isolation of a complementary DNA clone for the retinoblastoma gene. A cytogenetic deletion in chromosome 3 (p14-p23) was reported in small-cell lung cancer (SCLC) by Whang-Peng et al. At least one homologue of chromosome 3 was affected in the majority of SCLC tumours; however, the multiple chromosomal changes seen presented the possibility that chromosome 3 was rearranged, not deleted. We used polymorphic DNA probes for chromosome 3p and compared tumour and constitutional genotypes of nine SCLC patients. Our data show loss of alleles of chromosome 3p markers in tumour DNA of all nine patients supporting the hypothesis that this region contributes to tumorigenesis in SCLC.  相似文献   

8.
E Webb  J M Adams  S Cory 《Nature》1984,312(5996):777-779
Chromosome translocations in B-lymphoid tumours are providing intriguing insights and puzzles regarding the role of immunoglobulin genes in the activation of the myc oncogene (reviewed in refs 1, 2). The 15 ; 12 translocations found in most murine plasmacytomas and the analogous 8 ; 14 translocation in human Burkitt's lymphomas involve scissions of murine chromosome 15 (human chromosome 8) near the 5' end of the c-myc gene and subsequent fusion near an immunoglobulin heavy-chain gene. The less well characterized 'variant' translocations found in about 15% of such tumours also involve the myc-bearing chromosome band, but exchange occurs with a chromosome bearing an immunoglobulin light-chain locus--in mice, the kappa-chain locus bearing chromosome 6 (refs 3-5) and, in man, chromosome 2 (or 22), at the same band at which the kappa (or lambda) locus lies (reviewed in ref. 1). The Burkitt variant translocations involve scissions 3' of c-myc; one 8 ; 22 translocation placed the C lambda locus just 3' of c-myc, but usually the chromosome 8 breakpoint is a greater, but unknown, distance away from c-myc, more than 20 kilobases (kb) in one 8 ; 2 translocation involving the C kappa gene. Little is known about the murine 6 ; 15 translocations, although a C kappa gene cloned from one plasmacytoma (PC7183) is linked, via chromosome 12 sequences, to an unidentified region of chromosome 15 (ref. 11). We describe here the chromosome fusion region from plasmacytoma ABPC4, which displays the typical reciprocal 6;15 translocations. We find that the chromosome 6 breakpoint is near C kappa but, unlike those in the heavy-chain locus, not at a position where immunoglobulin genes normally recombine. Moreover, the chromosome 15 sequences involved in the ABPC4 translocation are not derived from the vicinity of c-myc.  相似文献   

9.
Loss of a Harvey ras allele in sporadic Wilms' tumour   总被引:5,自引:0,他引:5  
Genomic changes within chromosome band 11p13 appear to have a role in the initiation of Wilms' tumour. The human Harvey ras oncogene, c-Ha-ras 1, has been located by Jhanwar et al. immediately adjacent to this region at band 11p14 .1, although several groups have assigned the gene more distally at band 11p15 . We have examined tumour DNA from two cases of sporadic Wilms' tumour, and report here that in both cases one of the two constitutional c-Ha-ras 1 alleles was absent. One tumour had a reciprocal translocation between the short arm of chromosome 11 (at band 11p13), and the long arm of chromosome 12, with no visible loss of chromosomal material. The loss of a c-Ha-ras 1 allele in association with this translocation indicates that a submicroscopic deletion had occurred. The resulting hemizygosity may have had a role in tumour initiation. Our results indicate that the c-Ha-ras 1 gene and the 'Wilms' tumour locus' may be in close proximity. It would, therefore, be premature to exclude the possibility that these two sites are functionally related.  相似文献   

10.
F G Haluska  S Finver  Y Tsujimoto  C M Croce 《Nature》1986,324(6093):158-161
The reciprocal chromosome translocation, t(8;14), involving the heavy chain locus on chromosome 14 and the c-myc oncogene on chromosome 8 is a characteristic of the B-cell malignancies Burkitt's lymphoma and acute lymphoblastic leukaemia (ALL). We have cloned and sequenced the t(8; 14) breakpoints of an African Burkitt's lymphoma cell line, P3HR-1, and a pre-B cell ALL cell line, 380. In each case the region of chromosome 8 involved has recombined with a JH region on chromosome 14. The two sites of breakage on chromosome 8 lie within 70 base pairs (bp) of one another. At each joining site, sequences homologous to the signal sequences thought to be recognized by the V-D-J recombinase were identified, as were N regions. In B-cell chronic lymphocytic leukaemias (B-CLL) carrying the t(11; 14) chromosome translocation and in follicular lymphomas carrying the t(14; 18) translocation, the V-D-J recombinase is implicated in the mechanism of chromosomal translocations. We speculate that the same enzymatic mechanism is responsible for the t(8; 14) translocations in African Burkitt's lymphoma and pre-B cell ALL.  相似文献   

11.
Development of homozygosity for chromosome 11p markers in Wilms' tumour   总被引:7,自引:0,他引:7  
S H Orkin  D S Goldman  S E Sallan 《Nature》1984,309(5964):172-174
Somatic alterations in the genome are found in many human tumours. Chromosome rearrangements or base substitutions that activate cellular oncogenes appear to act dominantly. In contrast, recessive alleles apparently contribute to childhood retinoblastoma, as homozygosity (or hemizygosity ) for chromosome 13 is often established in tumours, by either mitotic nondisjunction or recombination. Parallels exist between retinoblastoma and childhood Wilms' tumour (WT). Retinoblastoma is often inherited and accompanied by a deletion of chromosome 13 (band q14), while WT is occasionally associated with aniridia and deletion of chromosome 11 band p13. Most Wilms' tumours are sporadic and not accompanied by these findings, although interstitial deletion of chromosome 11 in tumour, but not normal, cells has been reported. In view of these parallels, we compared constitutional and tumour DNAs from WT patients by using chromosome 11p DNA probes. We report here that although heterozygosity in constitutional DNAs was often preserved in tumour DNAs, one case developed homozygosity for chromosome 11p markers in tumour cells, implying the involvement of chromosomal events in revealing a recessive WT locus. This observation suggests the action of such general mechanisms in a tumour other than retinoblastoma.  相似文献   

12.
Wilms' tumour (nephroblastoma) is an embryonal neoplasm occurring in hereditary and spontaneous forms. Both types show rearrangements of the short arm of chromosome 11. The germ line of children with the rare inherited triad of aniridia, genito-urinary abnormality and mental retardation carry a chromosome 11 that has a deletion in its short arm (band 11p13) and these children are at increased risk of developing Wilms' tumour. Neonates with the Beckwith-Wiedemann syndrome, in which there may be duplication of the 11p13-11p15 region, are similarly predisposed. In the spontaneous form of the tumour a deletion of the 11p14 band in tumour cells, but not in normal cells, has been reported, and the development of homozygosity for recessive mutations in the 11p region is implicated in the aetiology of Wilms' tumour. In view of these chromosomal rearrangements and because Wilms' tumour is histologically indistinguishable from the early stages of kidney development, we have now examined the expression of genes localized to 11p in Wilms' tumour and human embryonic tissue. In 12 sporadic tumours examined, the expression of the gene coding for insulin-like growth factor-II (IGF-II), localized to the 11p15 region, was markedly increased relative to adult tissues, but was comparable to the level of expression in several fetal tissues including kidney, liver, adrenals and striated muscle. This may reflect the stage of tumour differentiation, but could also contribute to the malignant process, as IGF-II is an embryonal mitogen.  相似文献   

13.
Evidence that recessive cellular alleles at specific chromosomal loci are involved in tumorigenesis has been recently shown by work on tissues from patients with retinoblastoma, a neoplasm of embryonic retina whose predisposition is inherited as an autosomal dominant trait. A comparison of germ-line and tumour genotypes at loci on human chromosome 13, defined by restriction fragment length polymorphisms, showed that loss of the chromosome bearing the wild-type allele at the Rb-1 locus occurred frequently in the development of retinoblastoma. We report here results of similar studies of another embryonal neoplasm, Wilms' tumour of the kidney. Examination of germ-line and tumour genotypes from seven patients showed that five cases were consistent with the presence on human chromosome 11 of a locus in which recessive mutational events are expressed after abnormal chromosomal segregation events during mitosis.  相似文献   

14.
15.
G M Lenoir  J L Preud'homme  A Bernheim  R Berger 《Nature》1982,298(5873):474-476
Burkitt's-type lymphomas-leukaemias (BL) are monoclonal proliferations of malignant B lymphocytes. Irrespective of whether they carry the Epstein-Barr virus (EBV) genome, these tumour cells have been shown consistently to have one of the specific reciprocal chromosome translocations, t(8; 14), t(2; 8) or t(8; 22), involving the long arm of chromosome 8 (on 8q24) and chromosome 14, 2 or 22 (on 14q32, 2p12 and 22q11, respectively). The latter chromosomes have been shown recently to carry genes for immunoglobulin (Ig) heavy chains, and kappa and lambda light chains, respectively. Furthermore, the localization of kappa light chains within 2pcen-2p13 encompasses the breakpoint observed in Burkitt's translocation (2p12). It was therefore considered of interest to determine whether the expression of immunoglobulin chains in BL cells is related to the type of chromosomal anomalies observed. We report here that there is a direct relationship between expression of immunoglobulin light chains and specific type of translocation: BL cells with t(8; 22) express lambda chains, whereas those with t(2; 8) express kappa chains.  相似文献   

16.
A Vortkamp  M Gessler  K H Grzeschik 《Nature》1991,352(6335):539-540
The Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder affecting limb and craniofacial development in humans. GCPS-affected individuals are characterized by postaxial polysyndactyly of hands, preaxial polysyndactyly of feet, macroephaly, a broad base of the nose with mild hypertelorism and a prominent forehead. The genetic locus has been pinpointed to chromosome 7p13 by three balanced translocations associated with GCPS in different families. This assignment is corroborated by the detection of two sporadic GCPS cases carrying overlapping deletions in 7p13 (ref. 7), as well as by tight linkage of GCPS to the epidermal growth factor receptor gene in 7p12-13 (ref. 8). Of the genes that map to this region, those encoding T cell receptor-gamma, interferon-beta 2, epidermal growth factor receptor, and Hox1.4, a potential candidate gene for GCPS, have been excluded from the region in which the deletions overlap. Here we show that two of the three translocations interup the GLI3 gene, a zinc-finger gene of the GLI-Krüppel family already localized to 7p13 (refs 5, 6). The breakpoints are within the first third of the coding sequence. In the third translocation, chromosome 7 is broken at about 10 kilobases downstream of the 3' end of GLI3. Our results indicate that mutations disturbing normal GLI3 expression may have a causative role in GCPS.  相似文献   

17.
S Fujimoto  H Yamagishi 《Nature》1987,327(6119):242-243
The genes for the T-cell receptor, like the immunoglobulin genes, are rearranged as DNA. The mechanism of this rearrangement is not clear; unequal crossover between chromosomes and the looping-out and excision of the excess DNA have both been suggested. We isolated small polydisperse circular (spc) DNAs from mouse thymocytes and cloned them into a phage vector. Of the 56 clones we analysed, nine contained sequences homologous to T-cell receptor alpha-chain joining (J alpha) segments. We have characterized one of these clones; it contains one J alpha segment, and the product out of the recombination of a variable region of the alpha-chain gene (V alpha) with a J alpha gene segment. This is the first demonstration of the presence in extrachromosomal DNA of a reciprocal recombination product of any rearranging immunoglobulin or T-cell receptor gene. The finding verifies that V alpha-J alpha joining can occur by the looping-out and excision of chromosomal DNA.  相似文献   

18.
The association between certain human tumours and characteristic chromosomal abnormalities has led to the hypothesis that specific cellular oncogenes may be involved and consequently 'activated' in these genetic recombinations. This hypothesis has found strong support in the recent findings that some cellular homologues of retroviral onc genes are located in chromosomal segments which are affected by specific tumour-related abnormalities (see ref. 4 for review). In the case of human undifferentiated B-cell lymphoma (UBL) and mouse plasmacytomas, cytogenetic and chromosomal mapping data have identified characteristic chromosomal recombinations directly involving different immunoglobulin genes and the c-myc oncogene (for review see refs 5, 6). In UBLs carrying the t(8:14) translocation it has been shown that the human c-myc gene is located on the region of chromosome 8 (8q24) which is translocated to the immunoglobulin heavy-chain locus (IHC) on chromosome 14. Although it is known that the chromosomal breakpoints can be variably located within or outside the c-myc locus and within the IHC mu (refs 9, 11) or IHC gamma locus, the recombination sites have not been exactly identified and mapped in relation to the functional domains of these loci. We report here the identification and characterization of two reciprocal recombination sites between c-myc and IHC mu in a Burkitt lymphoma. Nucleotide sequencing of the cross-over point joining chromosomes 8 and 14 on chromosome 14q--shows that the onc gene is interrupted within its first intron and joined to the heavy-chain mu switch region. This recombination predicts that the translocated onc gene would code for a rearranged mRNA but a normal c-myc polypeptide.  相似文献   

19.
Z Dembi?  W Bannwarth  B A Taylor  M Steinmetz 《Nature》1985,314(6008):271-273
Serological and molecular genetic analyses of T-cell clones have shown that the T-cell antigen receptor apparently comprises two glycosylated, disulphide-linked polypeptide chains (alpha and beta), both of which span the cell membrane. Cloning of the genes encoding the two chains from mouse and human DNA has shown that the alpha- and beta-chains are composed of variable (V) and conserved (C) regions in agreement with peptide mapping data. Gene segments encoding variable and conserved domains of the beta-chain have been identified and undergo rearrangements during T-cell differentiation. The genes encoding the alpha-chain, so far described at the level of complementary DNA clones, also identify DNA rearrangements. Thus, the genes encoding the T-cell receptor show the same structure and dynamic behaviour as immunoglobulin genes, indicating that the two gene families belong to the same supergene family; this evolutionary relationship is supported by the fact that the genes encoding the beta-chain of the T-cell receptor are closely linked to immunoglobulin kappa light-chain genes on chromosome 6 in mouse. In man, however, the beta genes map to chromosome 7 (ref. 14) whereas the kappa-chain genes are located on chromosome 2, indicating that linkage between the two gene families is not needed for proper expression. Here we describe genomic clones encoding the constant portion of the T-cell receptor alpha-chain and map the gene to chromosome 14 in mouse, close to the gene for purine nucleoside phosphorylase (Np-2) which, in man, has been associated with T-cell immunodeficiencies.  相似文献   

20.
P Grundy  A Koufos  K Morgan  F P Li  A T Meadows  W K Cavenee 《Nature》1988,336(6197):374-376
Wilms' tumour of the kidney usually occurs sporadically, but can also segregate as an autosomal dominant trait with incomplete penetrance. Patients with the WAGR syndrome of aniridia, genitourinary anomalies, mental retardation and high risk of Wilms' tumour have overlapping deletions of chromosome 11p13 which has suggested a possible location for a Wilms' tumour locus. Moreover, many sporadic tumours have lost a portion of chromosome 11p. A second locus at 11p15 is implicated by association of the tumour with the Wiedemann-Beckwith syndrome and by tumour-specific losses of chromosome 11 confined to 11p15. Here we report a multipoint linkage analysis of a family segregating for Wilms' tumour, using polymorphic DNA markers mapped to chromosome 11p. The results exclude the predisposing mutation from both locations. In a second family, the 11p15 alleles lost in the tumour were derived from the affected parent, thus precluding this region as the location of the inherited mutation. These findings imply an aetiological heterogeneity for Wilms' tumour and raise questions concerning the general applicability of the carcinogenesis model that has been useful in the understanding of retinoblastoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号