首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Nanoscale or colloidal particles are important in many realms of science and technology. They can dramatically change the properties of materials, imparting solid-like behaviour to a wide variety of complex fluids. This behaviour arises when particles aggregate to form mesoscopic clusters and networks. The essential component leading to aggregation is an interparticle attraction, which can be generated by many physical and chemical mechanisms. In the limit of irreversible aggregation, infinitely strong interparticle bonds lead to diffusion-limited cluster aggregation (DLCA). This is understood as a purely kinetic phenomenon that can form solid-like gels at arbitrarily low particle volume fraction. Far more important technologically are systems with weaker attractions, where gel formation requires higher volume fractions. Numerous scenarios for gelation have been proposed, including DLCA, kinetic or dynamic arrest, phase separation, percolation and jamming. No consensus has emerged and, despite its ubiquity and significance, gelation is far from understood-even the location of the gelation phase boundary is not agreed on. Here we report experiments showing that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition; this thermodynamic instability triggers the formation of density fluctuations, leading to spanning clusters that dynamically arrest to create a gel. This simple picture of gelation does not depend on microscopic system-specific details, and should thus apply broadly to any particle system with short-range attractions. Our results suggest that gelation-often considered a purely kinetic phenomenon-is in fact a direct consequence of equilibrium liquid-gas phase separation. Without exception, we observe gelation in all of our samples predicted by theory and simulation to phase-separate; this suggests that it is phase separation, not percolation, that corresponds to gelation in models for attractive spheres.  相似文献   

2.
Colloidal suspensions are widely used to study processes such as melting, freezing and glass transitions. This is because they display the same phase behaviour as atoms or molecules, with the nano- to micrometre size of the colloidal particles making it possible to observe them directly in real space. Another attractive feature is that different types of colloidal interactions, such as long-range repulsive, short-range attractive, hard-sphere-like and dipolar, can be realized and give rise to equilibrium phases. However, spherically symmetric, long-range attractions (that is, ionic interactions) have so far always resulted in irreversible colloidal aggregation. Here we show that the electrostatic interaction between oppositely charged particles can be tuned such that large ionic colloidal crystals form readily, with our theory and simulations confirming the stability of these structures. We find that in contrast to atomic systems, the stoichiometry of our colloidal crystals is not dictated by charge neutrality; this allows us to obtain a remarkable diversity of new binary structures. An external electric field melts the crystals, confirming that the constituent particles are indeed oppositely charged. Colloidal model systems can thus be used to study the phase behaviour of ionic species. We also expect that our approach to controlling opposite-charge interactions will facilitate the production of binary crystals of micrometre-sized particles, which could find use as advanced materials for photonic applications.  相似文献   

3.
4.
颗粒物质类固-液相态间的转化现象广泛存在于工程地质、自然环境和工业生产等诸多领域,其力学特性在相态转化过程中会发生很大的变化,是目前颗粒物质力学研究的热点和难点.通过对颗粒物质类固-液转化过程中基本力学行为的研究,可建立表征颗粒物质类固-液转化的相变图,揭示类固-液转化的内在机理.颗粒物质的类固-液转化过程可大体分为两种,即阻塞与流动状态的转化,以及在流动过程中类固态与类液态力学行为的转化.本文以周期边界条件下的多分散颗粒系统为研究对象,采用离散单元方法数值模拟了单剪流动过程;分析了在不同体积分数和剪切速率下颗粒系统的平均应力、配位数、净接触时间数、有效摩擦系数、惯性指数和广义Savage数等宏观参数的分布规律;讨论了类固-液转化的内在机理,建立了一个以孔隙率、无量纲剪切应力和无量纲剪切速率为基本变量的相变图.该相变图不仅能够表征出颗粒物质由阻塞向流动状态的转变,同时也能够描述颗粒物质在剪切流动中发生类固-液转化的演化规律.  相似文献   

5.
D'Anna G  Gremaud G 《Nature》2001,413(6854):407-409
It has been suggested that a common conceptual framework known as 'jamming' (refs 1 and 2) may be used to classify a wide variety of physical systems; these include granular media, colloidal suspensions and glass-forming liquids, all of which display a critical slowdown in their dynamics before a sudden transition to an amorphous rigid state. Decreasing the relevant control parameter (such as temperature, drive or inverse density) may cause geometrical constraints to build up progressively and thus restrict the accessible part of the system's phase space. In glass-forming liquids (thermal molecular systems), jamming is provided by the classical vitrification process of supercooling, characterized by a rapidly increasing and apparently diverging viscosity at sufficiently low temperatures. In driven (athermal) macroscopic systems, a similar slowdown has been predicted to occur, notably in sheared foam or vibrated granular media. Here we report experimental evidence for dynamic behaviour, qualitatively analogous to supercooling, in a driven granular system of macroscopic millimetre-size particles. The granular medium is perturbed by isolated tapping or continuous vibration, with the perturbation intensity serving as a control parameter. We observe the random deflection of an immersed torsion oscillator that moves each time the grains rearrange, like a 'thermometer' sensing the granular noise. We caution that our granular analogy to supercooling is based on similarities in the dynamical behaviour, rather than quantitative theory.  相似文献   

6.
Jamming by shear     
Bi D  Zhang J  Chakraborty B  Behringer RP 《Nature》2011,480(7377):355-358
A broad class of disordered materials including foams, glassy molecular systems, colloids and granular materials can form jammed states. A jammed system can resist small stresses without deforming irreversibly, whereas unjammed systems flow under any applied stresses. The broad applicability of the Liu-Nagel jamming concept has attracted intensive theoretical and modelling interest but has prompted less experimental effort. In the Liu-Nagel framework, jammed states of athermal systems exist only above a certain critical density. Although numerical simulations for particles that do not experience friction broadly support this idea, the nature of the jamming transition for frictional grains is less clear. Here we show that jamming of frictional, disk-shaped grains can be induced by the application of shear stress at densities lower than the critical value, at which isotropic (shear-free) jamming occurs. These jammed states have a much richer phenomenology than the isotropic jammed states: for small applied shear stresses, the states are fragile, with a strong force network that percolates only in one direction. A minimum shear stress is needed to create robust, shear-jammed states with a strong force network percolating in all directions. The transitions from unjammed to fragile states and from fragile to shear-jammed states are controlled by the fraction of force-bearing grains. The fractions at which these transitions occur are statistically independent of the density. Jammed states with densities lower than the critical value have an anisotropic fabric (contact network). The minimum anisotropy of shear-jammed states vanishes as the density approaches the critical value from below, in a manner reminiscent of an order-disorder transition.  相似文献   

7.
以新型耐高温工程塑料--含酚酞侧基的聚芳醚砜(PES-C)为膜材料,参考溶度参数差计算结果,采用浊点滴定法、黏度的测定和凝胶动力学实验考察聚乙二醇对铸膜液体系的相分离曲线、黏度和凝胶速度的影响.采用相转化法在平板刮膜机上制备了系列超滤膜,研究了聚乙二醇对膜性能和结构的作用规律.结果表明,聚乙二醇含量增加,使三元体系发生相分离时所需的水量降低,铸膜液黏度增加,凝胶速度下降,水通量降低,截留率上升.  相似文献   

8.
 概述了利用纳米粒子与高分子配体液/液界面协同组装构筑新型结构化液体的研究进展;分析了结构化液体在封装、分离、催化、储能、生物医学等领域展现出的广阔应用前景;指出新型纳米粒子表面活性剂的开发、多重响应型结构化液体的构筑及其应用拓展等将成为未来结构化液体研究的重点方向。  相似文献   

9.
Zhang KQ  Liu XY 《Nature》2004,429(6993):739-743
The nucleation of crystalline materials is a hotly debated subject in the physical sciences. Despite the emergence of several theories in recent decades, much confusion still surrounds the dynamic processes of nucleation. This has been due in part to the limitations of existing experimental evidence. Charged colloidal suspensions have been used as experimental model systems for the study of crystal nucleation and structural phase transitions, as their crystallization phase diagram is analogous to that of atomic and molecular systems, but they can be visualized using microscopy. Previously, three-dimensional imaging of colloidal nucleation dynamics was achieved using confocal microscopy. However, the limited temporal resolution of the confocal microscope is of concern when trying to capture real-time colloidal crystal nucleation events. Moreover, as the thermodynamic driving force has remained undefined, data on key factors such as the critical nuclei size are at best semiquantitative. Here we present real-time direct imaging and quantitative measurements of the pre- and post-nucleation processes of colloidal spheres, and the kinetics of nucleation driven by an alternating electric field, under well-defined thermodynamic driving forces. Our imaging approach could facilitate the observation of other rarely observed phenomena, such as defect and grain-boundary formation and the effects of foreign particles during crystallization. Furthermore, it may prove useful in identifying optical and biological technologies based on colloids.  相似文献   

10.
基于Monte Carlo数值模拟,研究了具有近邻与次近邻交换耦合作用的Heisenberg体心立方晶格结构纳米颗粒的磁性质.研究表明,近邻和次近邻交换耦合作用的相互竞争将形成不同的磁有序.利用不同的序参量来表征不同的磁有序,给出了交换作用的大小和类型以及尺寸大小等对纳米颗粒的磁化强度、相变行为的影响.理论计算结果较好地解释了实验事实.  相似文献   

11.
Klaers J  Schmitt J  Vewinger F  Weitz M 《Nature》2010,468(7323):545-548
Bose-Einstein condensation (BEC)-the macroscopic ground-state accumulation of particles with integer spin (bosons) at low temperature and high density-has been observed in several physical systems, including cold atomic gases and solid-state quasiparticles. However, the most omnipresent Bose gas, blackbody radiation (radiation in thermal equilibrium with the cavity walls) does not show this phase transition. In such systems photons have a vanishing chemical potential, meaning that their number is not conserved when the temperature of the photon gas is varied; at low temperatures, photons disappear in the cavity walls instead of occupying the cavity ground state. Theoretical works have considered thermalization processes that conserve photon number (a prerequisite for BEC), involving Compton scattering with a gas of thermal electrons or photon-photon scattering in a nonlinear resonator configuration. Number-conserving thermalization was experimentally observed for a two-dimensional photon gas in a dye-filled optical microcavity, which acts as a 'white-wall' box. Here we report the observation of a Bose-Einstein condensate of photons in this system. The cavity mirrors provide both a confining potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped, massive bosons. The photons thermalize to the temperature of the dye solution (room temperature) by multiple scattering with the dye molecules. Upon increasing the photon density, we observe the following BEC signatures: the photon energies have a Bose-Einstein distribution with a massively populated ground-state mode on top of a broad thermal wing; the phase transition occurs at the expected photon density and exhibits the predicted dependence on cavity geometry; and the ground-state mode emerges even for a spatially displaced pump spot. The prospects of the observed effects include studies of extremely weakly interacting low-dimensional Bose gases and new coherent ultraviolet sources.  相似文献   

12.
Kagawa F  Miyagawa K  Kanoda K 《Nature》2005,436(7050):534-537
Changing the interactions between particles in an ensemble--by varying the temperature or pressure, for example--can lead to phase transitions whose critical behaviour depends on the collective nature of the many-body system. Despite the diversity of ingredients, which include atoms, molecules, electrons and their spins, the collective behaviour can be grouped into several families (called 'universality classes') represented by canonical spin models. One kind of transition, the Mott transition, occurs when the repulsive Coulomb interaction between electrons is increased, causing wave-like electrons to behave as particles. In two dimensions, the attractive behaviour responsible for the superconductivity in high-transition temperature copper oxide and organic compounds appears near the Mott transition, but the universality class to which two-dimensional, repulsive electronic systems belongs remains unknown. Here we present an observation of the critical phenomena at the pressure-induced Mott transition in a quasi-two-dimensional organic conductor using conductance measurements as a probe. We find that the Mott transition in two dimensions is not consistent with known universality classes, as the observed collective behaviour has previously not been seen. This peculiarity must be involved in any emergent behaviour near the Mott transition in two dimensions.  相似文献   

13.
 将聚胺固着剂(PA)、阳离子聚丙烯酰胺助留剂(CPAM)单独以及协同处理旧新闻纸浆,采用聚焦光束反射测定仪(FBRM)考察浆料中残余胶体粒子的数量、尺寸和尺寸分布,探讨固着剂/助留剂协同控制纸浆中溶解与胶体物质(DCS)的效果和机理。结果表明,PA单独处理纸浆时,会产生部分不能固着于纸张纤维或不被纤维网络截留的粒子聚集体;CPAM单独处理纸浆时,其电荷容易被DCS中和,导致其减少纸浆胶体粒子数量的效果明显下降,但不产生粒子聚集体;PA/CPAM协同处理纸浆时,后续的CPAM处理能将PA预处理纸浆时产生的部分粒子聚集体进一步固着到纸张纤维上,达到更好地降低胶体粒子数量的效果,且不产生更大的粒子聚集体。  相似文献   

14.
李德雪  尹社会 《江西科学》2014,32(5):578-581
通过理论和数值模拟分析了一个四模Lorenz混沌系统的非线性特性和全局动力学行为。从对称性、耗散性、平衡点的稳定性、空间相图、时序波形图、分岔图等几个方面展示了系统具有丰富的动力学行为。  相似文献   

15.
振动颗粒的分布随着外界驱动的变化会由对称态转为非对称态,即产生对称破缺现象.采用Urn模型,结合Eggers提出的urn的温度与粒子数呈T∝N-2的关系来分析该现象.通过研究细致平衡方程和粒子的概率分布函数获得各条临界线,由此确定相图,并说明了各相的特点.研究了序参量|ε|和磁化系数κ在临界线a附近的变化,发现与铁磁-顺磁相变类似;且这两个量的临界行为都满足标度律特点,由此确定临界线a为连续相变线.序参量|ε|在变化过程中会出现磁滞现象,由此确定临界线c为一级相变线.讨论发现这些相变现象的产生源自温度函数与urn模型本身的动力学行为.  相似文献   

16.
Origin7.0绘制二元系相图及相图数字化   总被引:1,自引:0,他引:1  
本文详细介绍了Origin7.0绘制二元系相图的方法,如何利用Origin7.0对文献中的二元系相图进行数字化,以及绘制后的二元系相图和数字化后的二元系相图可以实现数据可视化,对利用相图进一步研究两相平衡提供了方便.  相似文献   

17.
研究金属玻璃对于改善性能,开发新的合金体系有重要意义。由于实验手段的局限,目前为止还未能直接观测到液态结构的演化过程。胶体体系可以得到直观可视的粒子图像,已被应用于模拟研究原子体系的物理变化过程。通过不同的胶体体积浓度来模拟金属玻璃熔体,分析了不同胶体液态体系中的团簇结构,并对胶体粒子的扩散规律进行了探讨。结果表明液态体系的浓度越高,粒子的扩散速率越慢,局域特征结构发生变化,并在高浓度液态结构中观察到了结构的局域有序性动力学阻滞形成的笼子效应,为胶体体系液态微结构随浓度的演化提供了直接的实验证据。  相似文献   

18.
Nanometre- and micrometre-sized charged particles at aqueous interfaces are typically stabilized by a repulsive Coulomb interaction. If one of the phases forming the interface is a nonpolar substance (such as air or oil) that cannot sustain a charge, the particles will exhibit long-ranged dipolar repulsion; if the interface area is confined, mutual repulsion between the particles can induce ordering and even crystallization. However, particle ordering has also been observed in the absence of area confinement, suggesting that like-charged particles at interfaces can also experience attractive interactions. Interface deformations are known to cause capillary forces that attract neighbouring particles to each other, but a satisfying explanation for the origin of such distortions remains outstanding. Here we present quantitative measurements of attractive interactions between colloidal particles at an oil-water interface and show that the attraction can be explained by capillary forces that arise from a distortion of the interface shape that is due to electrostatic stresses caused by the particles' dipolar field. This explanation, which is consistent with all reports on interfacial particle ordering so far, also suggests that the attractive interactions might be controllable: by tuning the polarity of one of the interfacial fluids, it should be possible to adjust the electrostatic stresses of the system and hence the interparticle attractions.  相似文献   

19.
Two synthetic techniques for colloidal gold particles was improved by using SDS. And colloidal Au particles of mean diameters between 5 and 14 nm are synthesized, that exhibit improved monodispersity relative to previously published methods. According to the particular molecular structure of surfactants and different electrons distribution arising from colloidal small sizes and high surface/ volume ratios, it is found that there are a complex between SDS and Au3+ (and Au atoms ) during synthesizing colloidal gold nanoparticles and as a stablizer for Au particles, SDS can prevent their further growth. So the colloidal gold particles is monodispersize and more steady. But other surfactants don't affect the process of synthesizing gold nanoparticles because of their structures and properties different from SDS. Gold nanoparticles have considerable bioaffinity and can be applied to study the adsorption of proteins or polypeptides.  相似文献   

20.
Spreading of nanofluids on solids   总被引:1,自引:0,他引:1  
Wasan DT  Nikolov AD 《Nature》2003,423(6936):156-159
Suspensions of nanometre-sized particles (nanofluids) are used in a variety of technological contexts. For example, their spreading and adhesion behaviour on solid surfaces can yield materials with desirable structural and optical properties. Similarly, the spreading behaviour of nanofluids containing surfactant micelles has implications for soil remediation, oily soil removal, lubrication and enhanced oil recovery. But the well-established concepts of spreading and adhesion of simple liquids do not apply to nanofluids. Theoretical investigations have suggested that a solid-like ordering of suspended spheres will occur in the confined three-phase contact region at the edge of the spreading fluid, becoming more disordered and fluid-like towards the bulk phase. Calculations have also suggested that the pressure arising from such colloidal ordering in the confined region will enhance the spreading behaviour of nanofluids. Here we use video microscopy to demonstrate both the two-dimensional crystal-like ordering of charged nanometre-sized polystyrene spheres in water, and the enhanced spreading dynamics of a micellar fluid, at the three-phase contact region. Our findings suggest a new mechanism for oily soil removal--detergency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号