首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria posses their own ribosomes responsible for the synthesis of a small number of proteins encoded by the mitochondrial genome. In yeast,Saccharomyces cerevisiae, the two ribosomal RNAs and a single ribosomal protein, Varl, are products of mitochondrial genes, and the remaining approximately 80 ribosomal proteins are encoded in the nucleus. The mitochondrial translation system is dispensable in yeast, providing an excellent experimental model for the molecular genetic analysis of the fundamental properties of ribosomes in general as well as adaptations required for the specialized role of ribosomes in mitochondria. Recent studies of the peptidyl transferase center, one of the most highly conserved functional centers of the ribosome, and the Varl protein, an unusual yet essential protein in the small ribosomal subunit, have provided new insight into conserved and divergent features of the mitochondrial ribosome.  相似文献   

2.
Hemes (a, b, c, and o) and heme d 1 belong to the group of modified tetrapyrroles, which also includes chlorophylls, cobalamins, coenzyme F430, and siroheme. These compounds are found throughout all domains of life and are involved in a variety of essential biological processes ranging from photosynthesis to methanogenesis. The biosynthesis of heme b has been well studied in many organisms, but in sulfate-reducing bacteria and archaea, the pathway has remained a mystery, as many of the enzymes involved in these characterized steps are absent. The heme pathway in most organisms proceeds from the cyclic precursor of all modified tetrapyrroles uroporphyrinogen III, to coproporphyrinogen III, which is followed by oxidation of the ring and finally iron insertion. Sulfate-reducing bacteria and some archaea lack the genetic information necessary to convert uroporphyrinogen III to heme along the “classical” route and instead use an “alternative” pathway. Biosynthesis of the isobacteriochlorin heme d 1, a cofactor of the dissimilatory nitrite reductase cytochrome cd 1, has also been a subject of much research, although the biosynthetic pathway and its intermediates have evaded discovery for quite some time. This review focuses on the recent advances in the understanding of these two pathways and their surprisingly close relationship via the unlikely intermediate siroheme, which is also a cofactor of sulfite and nitrite reductases in many organisms. The evolutionary questions raised by this discovery will also be discussed along with the potential regulation required by organisms with overlapping tetrapyrrole biosynthesis pathways.  相似文献   

3.
4.
5.
Reelin-Disabled-1 (Dab1) signaling has a well-established role in regulating neuronal migration during brain development. Binding of Reelin to its receptors induces Dab1 tyrosine phosphorylation. Tyrosine-phosphorylated Dab1 recruits a wide range of SH2 domain-containing proteins and activates multiple signaling cascades, resulting in cytoskeleton remodeling and precise neuronal positioning. In this review, we summarize recent progress in the Reelin-Dab1 signaling field. We focus on Dab1 alternative splicing as a mechanism for modulating the Reelin signal in developing brain. We suggest that correct positioning of neurons in the developing brain is at least partly controlled by alternatively-spliced Dab1 isoforms that differ in the number and type of tyrosine phosphorylation motifs that they contain. We propose a model whereby different subsets of SH2 domain-containing proteins are activated by different Dab1 isoforms, resulting in coordinated migration of neurons.  相似文献   

6.
7.
Proteins are typically categorized into protein families based on their domain organization. Yet, evolutionarily unrelated proteins can also be grouped together according to their common functional roles. Sequestering proteins constitute one such functional class, acting as macromolecular buffers and serving as an intracellular reservoir ready to release large quantities of bound proteins or other molecules upon appropriate stimulation. Another functional protein class comprises effector proteins, which constitute essential components of many intracellular signal transduction pathways. For instance, effectors of small GTP-hydrolases are activated upon binding a GTP-bound GTPase and thereupon participate in downstream interactions. Here we describe a member of the IQGAP family of scaffolding proteins, DGAP1 from Dictyostelium, which unifies the roles of an effector and a sequestrator in regard to the small GTPase Rac1. Unlike classical effectors, which bind their activators transiently leading to short-lived signaling complexes, interaction between DGAP1 and Rac1-GTP is stable and induces formation of a complex with actin-bundling proteins cortexillins at the back end of the cell. An oppositely localized Rac1 effector, the Scar/WAVE complex, promotes actin polymerization at the cell front. Competition between DGAP1 and Scar/WAVE for the common activator Rac1-GTP might provide the basis for the oscillatory re-polarization typically seen in randomly migrating Dictyostelium cells. We discuss the consequences of the dual roles exerted by DGAP1 and Rac1 in the regulation of cell motility and polarity, and propose that similar signaling mechanisms may be of general importance in regulating spatiotemporal dynamics of the actin cytoskeleton by small GTPases.  相似文献   

8.
The excitation-contraction (E-C) coupling process in single twitch fibres from frog toe muscle was inhibited selectively by phenylglyoxal (PGO), a specific guanidyl modifying reagent. A new protein (31.5 kDa), which has PGO-binding ability and seems to play a key role in the E-C coupling process, was solubilized from transverse tubule membrane-junctional sarcoplasmic reticulum complexes (TTM-JSR) of frog skeletal muscles, using14C-PGO. The monoclonal antibody against this protein applied extracellularly inhibited the E-C coupling process of the single fibres. This protein appears to constitute the very first step of input for E-C coupling. It is considered to behave as an indispensable part of an electrometer to measure membrane potentials. Therefore, the name electrometrin is suggested for the new protein.  相似文献   

9.
10.
Formation of myelin sheaths by Schwann cells (SCs) enables rapid and efficient transmission of action potentials in peripheral axons, and disruption of myelination results in disorders that involve decreased sensory and motor functions. Given that construction of SC myelin requires high levels of lipid and protein synthesis, mitochondria, which are pivotal in cellular metabolism, may be potential regulators of the formation and maintenance of SC myelin. Supporting this notion, abnormal mitochondria are found in SCs of neuropathic peripheral nerves in both human patients and the relevant animal models. However, evidence for the importance of SC mitochondria in myelination has been limited, until recently. Several studies have recently used genetic approaches that allow SC-specific ablation of mitochondrial metabolic activity in living animals to show the critical roles of SC mitochondria in the development and maintenance of peripheral nerve axons. Here, we review current knowledge about the involvement of SC mitochondria in the formation and dysfunction of myelinated axons in the peripheral nervous system.  相似文献   

11.
12.
13.
14.
Zusammenfassung In Kulturen vonPeromyscus maniculatus und inMuntiacus muntjak wurden Tetraploidzellen gefunden, die als Produkte von Zellfusionen aufgefasst werden. Es wird angenommen, dass die ursprünglichen diploiden Elemente sich im Zeitpunkt der Fusion in verschiedenen Phasen des Zellzyklus befunden haben.

Supported in part by NIH fellowship No. 1-F02-CA-42, 531-02 from the National Cancer Institute, USPHS grant No. GM-15361, and Grant No. E 286 from the American Cancer Society.  相似文献   

15.
Fas, also known as CD95 or APO-1, is a member of the tumor necrosis factor/nerve growth factor superfamily. Although best characterized in terms of its apoptotic function, recent studies have identified several other cellular responses emanating from Fas. These responses include migration, invasion, inflammation, and proliferation. In this review, we focus on the diverse cellular outcomes of Fas signaling and the molecular switches identified to date that regulate its pro- and anti-apoptotic functions. Such switches occur at different levels of signal transduction, ranging from the receptor through to cross-talk with other signaling pathways. Factors identified to date including other extracellular signals, proteins recruited to the death-inducing signaling complex, and the availability of different intracellular components of signal transduction pathways. The success of therapeutically targeting Fas will require a better understanding of these pathways, as well as the regulatory mechanisms that determine cellular outcome following receptor activation.  相似文献   

16.
17.
Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation   总被引:17,自引:0,他引:17  
Arthritic diseases cause enormous burdens in terms of pain, crippling, and disability. Osteoarthritis (OA), the most common form of arthritis, is characterized by a slow progressive degeneration of articular cartilage. The exact etiology of OA is not known, but the degradation of cartilage matrix components is generally agreed to be due to an increased synthesis and activation of extracellular proteinases, mainly matrix metalloproteinases. Insufficient synthesis of new matrix macromolecules is also thought to be involved, possibly as a consequence of deficient stimulation by growth factors. Although OA is defined as a noninflammatory arthropathy, proinflammatory cytokines such as interleukin-1 have been implicated as important mediators in the disease. In response to interleukin-1, chondrocytes upregulate the production of nitric oxide and prostaglandin E2, two factors that have been shown to induce a number of the cellular changes associated with OA. The generation of these key signal molecules depends on inducible enzymes and can be suppressed by pharmacological inhibitors.  相似文献   

18.
The mechanism by which the novel, pure glucose-dependent insulinotropic, imidazoline derivative BL11282 promotes insulin secretion in pancreatic islets has been investigated. The roles of KATP channels, α2-adrenoreceptors, the I1-receptor-phosphatidylcholine-specific phospholipase (PC-PLC) pathway and arachidonic acid signaling in BL11282 potentiation of insulin secretion in pancreatic islets were studied. Using SUR1(-/-) deficient mice, the previous notion that the insulinotropic activity of BL11282 is not related to its interaction with KATP channels was confirmed. Insulinotropic activity of BL11282 was not related to its effect on α2-adrenoreceptors, I1-imidazoline receptors or PC-PLC. BL11282 significantly increased [3H]arachidonic acid production. This effect was abolished in the presence of the iPLA2 inhibitor, bromoenol lactone. The data suggest that potentiation of glucose-induced insulin release by BL11282, which is independent of concomitant changes in cytoplasmic free Ca2+ concentration, involves release of arachidonic acid by iPLA2 and its metabolism to epoxyeicosatrienoic acids through the cytochrome P-450 pathway. Received 5 July 2007; received after revision 18 September 2007; accepted 20 September 2007  相似文献   

19.
Zusammenfassung Signifikante Unterschiede des gesamten Fettgehaltes zwischen S- und R-Arten derSpodoptera littoralis wurden nicht festgestellt. DDT und Methylparathion wurden im Gegensatz zu Carbaryl in den R-Arten gespeichert und die Reduktionsrate von Methylparathion erwies sich als wesentlich niedriger als bei DDT.  相似文献   

20.
Zusammenfassung Bei Untersuchungen der elektrophysiologischen Reaktion des Facettenauges beim MehlkäferTenebrio molitor wurde die Maximalreaktion zwischen 510 und 530 nm gefunden. Latenz und Amplitude dienten als Kriterien der facettären Spektraleffizienz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号