首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为探讨二硫代氨基甲酸钠缓蚀剂在硫酸中对碳钢的缓蚀机理,以胺和CS2为起始反厘物,制备出一系列二硫代氨基甲酸盐类缓蚀剂,进行了红外光谱分析.采用失重法和电化学方法对该缓蚀剂在硫酸中对碳钢的缓蚀作用进行实验.结果表明:二硫代氨基甲酸钠在浓度为0.5mol/L的H2SO4中对碳钢表现出较好的缓蚀性能;在硫酸溶液中,随二硫代氨基甲酸钠缓蚀剂浓度的增加,缓蚀效率相应提高;在H2SO4介质中,二硫代氨基甲酸钠是一个混合型缓蚀剂,氮原子上取代基不同对二硫代氨基甲酸盐类缓蚀剂的缓蚀效率影响较大。  相似文献   

2.
用电化学法研究咪唑啉类缓蚀剂对碳钢的缓蚀性能   总被引:9,自引:0,他引:9  
本文用线性极化,Tafel曲线,交流阻抗等电化学方法测定了三种咪唑类缓蚀剂在油田水中对碳钢的缓蚀性.找出缓蚀剂的最佳有效浓度,比较出这几种缓蚀剂之间的缓蚀效率大小,初步分析其缓蚀机理及其缓蚀效率差异的原因  相似文献   

3.
研究了含有膦羧酸类缓蚀剂、阻垢分散剂的缓蚀阻垢剂对A3碳钢在模拟循环冷却水中的缓蚀性能、阻垢性能及缓蚀机理。测试结果说明:含有膦羧酸类缓蚀剂缓蚀阻垢剂对A3碳钢具有良好的缓蚀作用;含有阻垢分散剂的缓蚀阻垢剂对模拟冷却水具有良好的阻垢性能。  相似文献   

4.
采用动电势扫描法测定了碳钢在饱和(NH4)2CO3溶液中的阳极极化曲线,研究了几种缓蚀剂与表面活性剂复配后的协同缓蚀作用。结果表明:体系中添加0.1%的四西基碘化铵,缓蚀效率为55.3%; 当0.05%的四西基碘化铵与0.05%十二烷基硫酸钠复配时,协同缓蚀效率可达89.2%。应用动电势扫描法能够快速、简便地测定腐蚀速率和评选缓蚀剂。  相似文献   

5.
为了解决碳钢在含有NaCl溶液中的腐蚀问题,在硅酸钠溶液中复配其他缓蚀组分,制备环保型复合缓蚀剂.通过Tafel极化曲线,盐水浸泡实验,扫描电子显微镜(SEM)对缓蚀剂的性能进行表征.实验结果表明:在室温条件下含缓蚀剂的NaCl水溶液(质量分数5%)对碳钢的腐蚀速率明显降低,缓蚀率达到85.58%,SEM分析显示碳钢表面形成了一层致密的钝化膜;随着腐蚀体系的温度、搅拌速度升高以及碳钢浸泡时间的延长,缓蚀效率不断下降.  相似文献   

6.
本研究借助静态腐蚀失重法确定了硫氰酸钾/硫脲缓蚀剂的最佳配方,并分别研究了该配方在5%硫酸、5%硝酸及5%盐酸中对45碳钢的缓蚀性能。结果表明:在5%硫酸溶液中,使用硫氰酸钾:硫脲为7:3的质量比配方,缓蚀剂为0.2%时对45碳钢的缓蚀达到最大,缓蚀率为82.3%;在5%硝酸溶液中,使用硫氰酸钾:硫脲为4:6的质量比配方,缓蚀剂的加入量为0.1%时对45碳钢的缓蚀率可达到99%以上;在5%盐酸中,只需加入0.2%的复合缓蚀剂(硫氰酸钾:硫脲=4:6),对45碳钢的缓蚀率可以达到76%。Tafel极化曲线表明硫氰酸钾/硫脲复合物的加入可以明显地降低45碳钢在3种酸溶液中的腐蚀电流。  相似文献   

7.
吐温-80对碳钢在硫酸溶液中的缓蚀作用研究   总被引:1,自引:0,他引:1  
应用动电位扫描法和交流阻抗法,研究了表面活性剂Tw-80(吐温-80)在硫酸溶液中对碳钢的缓蚀作用,研究结果表明,Tw-80在10%的硫酸溶液中能使碳钢发生钝化,当其浓度为47.52mg/L时,对碳钢的缓蚀效果最好,属于一种以控制阳极为主的混合型缓蚀剂。  相似文献   

8.
为了明确循环水温度对不同材质的换热设备的缓蚀影响,利用电化学腐蚀测量方法,研究加入阻垢缓蚀剂的循环水在不同温度下对10#碳钢和316L不锈钢的电化学腐蚀行为,测定极化曲线。结果表明:随着循环水温度的升高,阻垢缓蚀剂对10#碳钢和316L不锈钢的最佳缓蚀温度不同。当循环水温度为40℃时,对316L不锈钢的缓蚀作用最好;对10#碳钢的缓蚀作用是随着温度的升高而逐渐增强;当循环水温度为60℃时,对10#碳钢的缓蚀效果最好,316L不锈钢的耐腐蚀性要优于10#碳钢。由于10#碳钢和316L不锈钢有着不同的电化学腐蚀机理,因此导致了两种材质在循环水中最佳的缓蚀温度也是不同的。  相似文献   

9.
研制了一种咪唑衍生物(BBIM),利用失重法、动电位扫描极化法及SEM研究了BBIM与碘化钾和甲醛在质量分数5%HCl中按一定比例复配对碳钢的缓蚀效果,讨论了浓度、温度对缓蚀性能的影响,同时对缓蚀机理进行了探讨.结果表明两种复配缓蚀剂在5%HCl腐蚀环境中对碳钢均具有良好的缓蚀作用,是一种混合型缓蚀剂,缓蚀作用机理为协同机理.  相似文献   

10.
介绍了一种新型季铵盐固体DZ-1的合成方法,初步研究了季铵盐作为单组分缓蚀剂对碳钢在盐酸酸洗液中的缓蚀性能,讨论了缓蚀剂浓度,酸液浓度,温度和Fe3 浓度等因素对缓蚀效果影响,实验结果表明,新型季铵盐固体DZ-1具有合成方法简单,不燃不爆,用量低,缓蚀性能好的优点,可直接用作温度低于70度,浓度小于10%的盐酸酸洗缓蚀剂。  相似文献   

11.
文章采用盐酸直接浸泡方法从杨树叶中提取有机缓蚀组分,通过失重法研究了浸泡用酸浓度、温度等因素对其缓蚀效率的影响,并与其它添加剂复配。实验结果表明,最优配方对碳钢在5%的盐酸溶液中有优良的缓蚀效果,其缓蚀率达95.79%,属于混合控制型缓蚀剂。  相似文献   

12.
青梅腌制过程中主要成分和有机酸谱变化   总被引:3,自引:0,他引:3  
通过对青梅腌制过程中盐分、总酸、还原糖等主要成分的检测,以及采用反向高效液相色谱法对腌制过程中青梅果肉与腌制液中主要有机酸的定量分析,了解青梅腌制过程中主要成分和有机酸谱变化规律.结果表明,青梅腌制过程中,盐分不断向青梅组织中渗透,而青梅中水分、糖、酸等成分不断向外渗透,直至动态平衡.在每吨鲜梅一次性加入300 kg食盐进行腌制时,在腌制的第20 d左右盐分、总酸、还原糖在果肉与腌制液中基本趋于平衡,此时果肉w(盐分)为24.42%、w(总酸)为5.18%、w(总还原糖)为5.31%;腌制液中相应参数分别为27.06%,4.91%和4.79%.HPLC分析发现,青梅中的主要有机酸为柠檬酸,其次是苹果酸和草酸,还含少量的酒石酸、乳酸、乙酸和琥珀酸,在腌制过程中各有机酸的含量变化与总酸变化有一定的误差.在腌制过程中,青梅中的主要有机酸种类比较稳定,可以作为后续加工产品的质量控制指纹图谱.  相似文献   

13.
阻垢剂的研究进展   总被引:1,自引:0,他引:1  
阻垢剂作为一种水质稳定剂而被广泛应用于工业循环冷却水系统中.它的研究一直是水处理的一个热点,其沉降效果的稳定性、环境安全性也越来越受到重视.从天然聚合物、羧酸类聚合物、磺酸类聚合物、含磷聚合物以及环境友好型聚合物等几个方面,重点介绍了近年来国内外较为常见的各种阻垢剂的特性、合成工艺及其研究新进展,并对未来发展方向作了展望,认为带有特殊功能基团的绿色阻垢剂将成为未来研发的主要目标.  相似文献   

14.
刘洪波  吴健 《贵州科学》2012,30(4):50-53
在分析低碳冷轧带钢酸洗机理的基础上,研究了低碳带钢电解酸洗的影响因素(电解极板及电解工艺参数),研究表明:对Pb—Ca-Sn酸洗阳极增加保护措施及采用酸洗温度40℃、酸液浓度70g/L、电流密度10c/dm^2的电解工艺参数可得到较好的酸洗效果。  相似文献   

15.
建立一种具有食饵—捕食关系的具有有限营养的恒化器模型,考虑在模型中加入一种对食饵有抑制生长作用,而捕食者可以吸收却不影响生长的抑制剂,我们得到这类模型持久性及平衡点稳定性的充分判据。  相似文献   

16.
主要探讨酸洗条件对非直接接触式金属热还原后产物中杂质的洗除效果.研究表明,采用醋酸盐酸联合酸洗方案可去除金属热还原产物中的杂质(CaO,Ca,CaTiO3),达到提纯金属Ti的目的;Ti不与醋酸反应,但能溶于浓盐酸,故盐酸酸洗时间不能过长,否则金属Ti溶解,造成Ti损失,影响Ti收得率;酸洗过程中酸体积浓度越大,酸洗时间越长,金属Ti的纯度越高.综合考虑酸耗、酸洗效率和Ti的溶损等因素,采用体积浓度50%醋酸酸洗6 h和体积浓度20%盐酸酸洗0.5 h的联合酸洗方案效果最好.  相似文献   

17.
探讨了以速腌工艺代替传统的腌制工艺生产午餐肉罐头的可行性。通过对不同工艺条件生产的午餐肉,按ZB×70004-89罐头食品的感官检验标准、三点法差别检验,进行感官评定,结果表明,采用小块肉并配合以适度的机械作用进行的速腌工艺,所制得的午餐肉的品质,与传统生产工艺生产的午餐肉的品质无明显差异。  相似文献   

18.
介绍冷轧酸洗生产线的工艺过程及酸洗温度的特点,设计了基于PLC的温度模糊控制系统。试验证明,系统具有良好的动态响应,有效地提高了酸温度的控制精度。  相似文献   

19.
电解法处理不锈钢酸洗废液机理的研究   总被引:6,自引:0,他引:6  
通过对常用于清洗不锈钢氧化皮的含有氢氟酸酸洗废液进行电解,探讨了在酸性废液中金属电沉积的条件及阳离子表面活性剂对析氢超电势的影响,初步找到了电解法处理酸洗废液再生利用的方法;这对解决国内外至今尚未解决的排放污染问题有较大的实用价值。  相似文献   

20.
蔬菜低盐腌制工艺及袋装产品的研究   总被引:2,自引:0,他引:2  
李雄辉  徐刚 《江西科学》2003,21(4):353-356
6种蔬菜品种在不同食盐浓度下,配合化学合成和天然复合防腐剂,采用初腌、复腌、转池、保鲜等工序。使得在50g/kg食盐浓度条件下蔬菜腌制工艺获得成功。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号