首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of low-mass stars like our Sun can be explained by the gravitational collapse of a molecular cloud fragment into a protostellar core and the subsequent accretion of gas and dust from the surrounding interstellar medium. Theoretical considerations suggest that the radiation pressure from the protostar on the in-falling material may prevent the formation of stars above ten solar masses through this mechanism, although some calculations have claimed that stars up to 40 solar masses can in principle be formed via accretion through a disk. Given this uncertainty and the fact that most massive stars are born in dense clusters, it was suggested that high-mass stars are the result of the runaway merging of intermediate-mass stars. Here we report observations that clearly show a massive star being born from a large rotating accretion disk. The protostar has already assembled about 20 solar masses, and the accretion process is still going on. The gas reservoir of the circumstellar disk contains at least 100 solar masses of additional gas, providing sufficient fuel for substantial further growth of the forming star.  相似文献   

2.
The edge-on disk surrounding the nearby young star beta Pictoris is the archetype of 'debris disks', which are composed of dust and gas produced by collisions between--and evaporation of--planetesimals, analogues of Solar System comets and asteroids. These disks may provide insight into the formation and early evolution of terrestrial planets. Previous work on beta Pic concluded that the disk gas has roughly solar abundances of elements, but this poses a problem because such gas should rapidly be blown away from the star, contrary to observations showing a stable gas disk in keplerian rotation. Here we report the detection of singly and doubly ionized carbon (C II, C III) and neutral atomic oxygen (O I) gas in the beta Pic disk. Carbon is extremely overabundant relative to every other measured element. This appears to solve the problem of the stable gas disk, because the carbon overabundance should keep the gas disk in keplerian rotation. The overabundance may indicate that the gas is produced from material more carbon-rich than expected of Solar System analogues.  相似文献   

3.
Wang Z  Chakrabarty D  Kaplan DL 《Nature》2006,440(7085):772-775
Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.  相似文献   

4.
Song I  Zuckerman B  Weinberger AJ  Becklin EE 《Nature》2005,436(7049):363-365
The slow but persistent collisions between asteroids in our Solar System generate a tenuous cloud of dust known as the zodiacal light (because of the light the dust reflects). In the young Solar System, such collisions were more common and the dust production rate should have been many times larger. Yet copious dust in the zodiacal region around stars much younger than the Sun has rarely been found. Dust is known to orbit around several hundred main-sequence stars, but this dust is cold and comes from a Kuiper-belt analogous region out beyond the orbit of Neptune. Despite many searches, only a few main-sequence stars reveal warm (> 120 K) dust analogous to zodiacal dust near the Earth. Signs of planet formation (in the form of collisions between bodies) in the regions of stars corresponding to the orbits of the terrestrial planets in our Solar System have therefore been elusive. Here we report an exceptionally large amount of warm, small, silicate dust particles around the solar-type star BD+20,307 (HIP 8920, SAO 75016). The composition and quantity of dust could be explained by recent frequent or huge collisions between asteroids or other 'planetesimals' whose orbits are being perturbed by a nearby planet.  相似文献   

5.
Carbonates on large Solar System bodies like Earth and Mars (the latter represented by the meteorite ALH84001) form through the weathering of silicates in a watery (CO3)2- solution. The presence of carbonates in interplanetary dust particles and asteroids (again, represented by meteorites) is not completely understood, but has been attributed to aqueous alteration on a large parent body, which was subsequently shattered into smaller pieces. Despite efforts, the presence of carbonates outside the Solar System has hitherto not been established. Here we report the discovery of the carbonates calcite and dolomite in the dust shells of evolved stars, where the conditions are too primitive for the formation of large parent bodies with liquid water. These carbonates, therefore, are not formed by aqueous alteration, but perhaps through processes on the surfaces of dust or ice grains or gas phase condensation. The presence of carbonates which did not form by aqueous alteration suggests that some of the carbonates found in Solar System bodies no longer provide direct evidence that liquid water was present on large parent bodies early in the history of the Solar System.  相似文献   

6.
Greiner M  Regal CA  Jin DS 《Nature》2003,426(6966):537-540
The realization of superfluidity in a dilute gas of fermionic atoms, analogous to superconductivity in metals, represents a long-standing goal of ultracold gas research. In such a fermionic superfluid, it should be possible to adjust the interaction strength and tune the system continuously between two limits: a Bardeen-Cooper-Schrieffer (BCS)-type superfluid (involving correlated atom pairs in momentum space) and a Bose-Einstein condensate (BEC), in which spatially local pairs of atoms are bound together. This crossover between BCS-type superfluidity and the BEC limit has long been of theoretical interest, motivated in part by the discovery of high-temperature superconductors. In atomic Fermi gas experiments superfluidity has not yet been demonstrated; however, long-lived molecules consisting of locally paired fermions have been reversibly created. Here we report the direct observation of a molecular Bose-Einstein condensate created solely by adjusting the interaction strength in an ultracold Fermi gas of atoms. This state of matter represents one extreme of the predicted BCS-BEC continuum.  相似文献   

7.
矿压与煤层瓦斯涌出量关联性分析   总被引:1,自引:0,他引:1  
目前关于矿山压力与煤层瓦斯涌出量之间关系,许多学者从定性角度分析给出了一些规律性.文中根据工程实测数据,借助SPSS软件,对所测得的矿山压力与瓦斯涌出量之间的关系进行了定量分析探讨.结果表明,矿山压力与瓦斯涌出量之间有密切的关系,但瓦斯涌出量还受其他因素的影响,因此,随着矿山压力增大,瓦斯涌出量逐渐增加,但两者之间并不是简单的线性关系.  相似文献   

8.
Imai H  Obara K  Diamond PJ  Omodaka T  Sasao T 《Nature》2002,417(6891):829-831
Evolved stars of about one solar mass are in general spherically symmetric, yet the planetary nebulae that they produce in the next phase of their evolution tend not to exhibit such symmetry. Collimated 'jets' and outflows of material have been observed up to approximately 0.3 parsec from the central stars of planetary nebulae, and precession of those jets has been proposed to explain the observed asymmetries. Moreover, it has recently been shown theoretically that magnetic fields could launch and collimate such jets. Here we report the detection of a collimated and precessing jet of molecular gas that is traced by water-vapour maser spots approximately 500 astronomical units (au) from the star W43A in Aquila. We conclude that the jet is formed in the immediate vicinity of the star, and infer that elongated planetary nebulae are formed by jets during the short period, of less than 1,000 years, when the star makes its transition through the proto-planetary nebula phase to become a planetary nebula.  相似文献   

9.
周义德  王方 《河南科学》2004,22(5):711-713
分析了现行生物质燃气焦油及灰尘含量测试方法的不完善之处,提出了修改标准的具体建议。  相似文献   

10.
Molecular hydrogen (H2) is by far the most abundant material from which stars, protoplanetary disks and giant planets form, but it is difficult to detect directly. Infrared emission lines from H2 have recently been reported towards beta Pictoris, a star harbouring a young planetary system. This star is surrounded by a dusty 'debris disk' that is continuously replenished either by collisions between asteroidal objects or by evaporation of ices on Chiron-like objects. A gaseous disk has also been inferred from absorption lines in the stellar spectrum. Here we present the far-ultraviolet spectrum of beta Pictoris, in which H2 absorption lines are not seen. This allows us to set a very low upper limit on the column density of H2: N(H2) 6 x 10-4. As CO would be destroyed under ambient conditions in about 200 years (refs 9, 11), our result demonstrates that the CO in the disk arises from evaporation of planetesimals.  相似文献   

11.
裂纹尖端位错发射与运动的分子动力学模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
带缺陷的高强度X80管线钢基体相α-Fe裂纹顶端的变形机理对于揭示该材料的失效机理是非常重要的.采用嵌入原子方法(EAM)描述原子间作用势,由大型分子动力学并行软件LAMMPS(Largescale Atomic/Molecular Massively Parallel Simulator),建立足够大的模型以避免边界对位错发射与运动的影响,对中心裂纹板施加远场应力载荷,获得了裂尖发射位错的临界应力强度因子.模拟结果显示,在远场应力作用下,裂纹尖端出现了间歇性发射出位错的现象,即,首先在裂尖沿[1 1〖  相似文献   

12.
采用SSTk-ω湍流模型,对高压圆盘气体轴承出流气体形成的低度欠膨胀超音速圆盘缝隙射流流场进行数值模拟。结果表明,低度欠膨胀超音速圆盘射流起始段1的流场波系,与低度欠膨胀超音速轴对称射流类似;起始段2中由于黏性作用逐渐深入核心区,使核心区宽度持续减小。进入亚音速基本段之后,核心区消失,射流对称面上速度持续下降,直至出现滞止区。与此同时,缝隙射流发生规则分离,两股气流偏离滞止区向两侧流动,在射流左右两侧的远场形成规则对称的两个大尺度环状漩涡。  相似文献   

13.
Papadopoulos P  Ivison R  Carilli C  Lewis G 《Nature》2001,409(6816):58-60
Molecular hydrogen (H2) is an important component of galaxies because it fuels star formation and the accretion of gas onto active galactic nuclei (AGN), the two processes that can generate the large infrared luminosities of gas-rich galaxies. Observations of spectral-line emission from the tracer molecule carbon monoxide (CO) are used to probe the properties of this gas. But the lines that have been studied in the local Universe-mostly the lower rotational transitions of J = 1 --> 0 and J = 2 --> 1-have hitherto been unobservable in high-redshift galaxies. Instead, higher transitions have been used, although the densities and temperatures required to excite these higher transitions may not be reached by much of the gas. As a result, past observations may have underestimated the total amount of molecular gas by a substantial amount. Here we report the discovery of large amounts of low-excitation molecular gas around the infrared-luminous quasar APM08279+5255 at redshift z = 3.91, using the two lowest excitation lines of 12 CO (J = 1 --> 0 and J = 2 --> 1). The maps confirm the presence of hot and dense gas near the nucleus, and reveal an extended reservoir of molecular gas with low excitation that is 10 to 100 times more massive than the gas traced by the higher-excitation observations. This raises the possibility that significant amounts of low-excitation molecular gas may exist in the environments of high-redshift (z > 3) galaxies.  相似文献   

14.
Brittain SD  Rettig TW 《Nature》2002,418(6893):57-59
Massive planets have now been found orbiting about 80 stars. A long outstanding question critical to theories of planet formation has been the timescale on which gas-giant planets form; in particular, stars more massive than the Sun may blow away the surrounding gas associated with their formation more quickly than it can be accumulated by the protoplanetary cores. Evidence for a protoplanet around a Herbig AeBe star (such stars are 2 3 times more massive than the Sun) would constrain the timescale of planet formation. Here we report the detection of CO and H(3)(+) emission from the 5-10-million-year-old Herbig AeBe star HD141569. We interpret the CO data as indicating that the inner disk surrounding the star is past the early phase of accretion and planetesimal formation, and that most of the gas has been cleared out to a distance of more than 17 astronomical units. CO effectively destroys H(3)(+) (ref. 2), so their presence in the same source is surprising. Moreover, H(3)(+) line emission has previously been detected only from the atmospheres of the giant planets in the Solar System. The H(3)(+) and CO may therefore be distributed in the disk at different circumstellar distances, or, alternatively, H(3)(+) may be located in the extended envelope of a protoplanet.  相似文献   

15.
Jiang Z  Tamura M  Fukagawa M  Hough J  Lucas P  Suto H  Ishii M  Yang J 《Nature》2005,437(7055):112-115
The formation process for stars with masses several times that of the Sun is still unclear. The two main theories are mergers of several low-mass young stellar objects, which requires a high stellar density, or mass accretion from circumstellar disks in the same way as low-mass stars are formed, accompanied by outflows during the process of gravitational infall. Although a number of disks have been discovered around low- and intermediate-mass young stellar objects, the presence of disks around massive young stellar objects is still uncertain and the mass of the disk system detected around one such object, M17, is disputed. Here we report near-infrared imaging polarimetry that reveals an outflow/disk system around the Becklin-Neugebauer protostellar object, which has a mass of at least seven solar masses (M(o)). This strongly supports the theory that stars with masses of at least 7M(o) form in the same way as lower mass stars.  相似文献   

16.
与空气尘水检测不同,转炉煤气尘水检测有其特殊性和难度,煤气压力属次高压而且有剧毒,针对其特殊性,对常规使用的TH—880Ⅳ型采样仪进行改装,对武钢三炼钢转炉煤气尘水进行定量检测分析,为下一步控制窑温提供依据。同时,该方法还可用于高炉、焦炉煤气尘水检测分析,可以在冶金钢铁企业广泛推广。  相似文献   

17.
细水雾抑制煤尘与瓦斯爆炸实验   总被引:1,自引:0,他引:1  
搭建小尺寸细水雾实验平台,用相应管道模拟矿井环境.在阐明煤尘与瓦斯爆炸传播机理的基础上,研究细水雾抑制管道混合物爆炸的有效性,并对其做定性定量的分析研究.研究发现:在细水雾作用下,煤尘与瓦斯的火焰传播速度会相应减小、所测火焰温度有所降低.当混合物爆炸的威力较大时,细水雾对其相关参数影响较弱,应适当增加压力,改变细水雾的物理化学抑制作用,增强灭火特性.实验结论:细水雾抑制煤尘与瓦斯爆炸的研究为煤矿抑爆装置的研制和安装提供了技术支撑.  相似文献   

18.
高温除尘用纤维多孔陶瓷材料的制备及性能   总被引:1,自引:0,他引:1  
利用陶瓷纤维直径不同的特点,采用一步成形的方法制备具有梯度结构的纤维多孔陶瓷。采用扫描电镜(SEM)和金相显微镜对纤维多孔陶瓷的显微结构进行表征,并对影响材料性能的各种因素进行分析。结果表明:800℃烧成样品的抗折强度为6.7 MPa,气孔率最大达到76%,室温下空气流速为1 m/min时的过滤阻力为98 Pa,过滤阻力随着烧成温度的上升而逐渐下降。  相似文献   

19.
采用Fluent软件模拟高炉布袋除尘系统中煤气主管道及箱体内的速度场和流场。数值计算结果表明,随着煤气在主管道中的深入,其速度总体上呈减小趋势;距离煤气主管入口越远,箱体煤气流量越大,但管道直径发生变化处,箱体煤气流量会发生突变;主管入口煤气总流量和密度对进入各个箱体的煤气流量分布影响不大,而主管道直径则对煤气在各个箱体的分布规律影响较大。  相似文献   

20.
研制多孔微滤陶瓷膜,试验研究了这种微滤陶瓷膜过滤去除废气中微尘的效果。试验结果表明,这种陶瓷膜对气体中微尘具有良好的过滤效率。用-1μm含量为95%,中位径为0.159μm的微尘进行过滤试验,除尘效率迭97.78%~100.00%,除尘效率随过滤风速的增加而降低。过滤时压降与过滤风速之间呈线性关系。过滤后的陶瓷膜可以通过气体反冲再生,反冲气速大于9.00m/s时,膜通量可以完全恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号