首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在不同的温度下烧结制备 Ni O靶 ,用射频磁控溅射法淀积 Ni O/ Ni81 Fe1 9双层膜 ,研究了不同的温度烧结 Ni O靶对 Ni O/ Ni Fe双层膜特性的影响 ,结果表明 ,使用不同的烧结温度制备的 Ni O靶溅射所得的 Ni O膜中 Ni的化学价态及其含量不同 ,进而影响 Ni O/ Ni81 Fe1 9双层膜的磁滞回线的矩形度及层间交换耦合作用  相似文献   

2.
研究了用磁控溅射法制备的Ni81Fe19/Cr82Al18双层膜中的交换耦合。样品的室温矫顽力与1/t^3/2M成线性关系,从而表明在N不i81Fe19/Cr82Al18中交换耦合力为铁磁/反铁磁界面的随机相互作用。另外还讨论了反铁磁层厚度对交换偏置的影响。  相似文献   

3.
4.
用射频磁控溅射方法制备多层膜,研究了双层膜NiO/NiFe的矫顽力HC和交换耦合场Hex与反铁磁层NiO,铁磁层NiFe厚度的关系。结果表明:NiO厚度为70nm时,Hex最大;Hc随NiO厚度增大而增大。当NiFe厚度增加时,Hex近似线性减小;而Hc则随NiFe厚度增大开始有缓慢增加,然后才减小。  相似文献   

5.
室温下,利用直流对靶磁控溅射设备制备了Ag(x)/Fe(35nm)/Ag(x)系列薄膜,x=1,2,3,4nm.利用扫描探针显微镜(SPM)观测了样品的表面形貌及磁畴结构,应用X射线衍射仪(XRD)分析了样品的晶体结构,通过振动样品磁强计(VSM)测量了样品的磁特性.研究表明,非磁性Ag层厚度对Ag/Fe/Ag系列薄膜的微结构和磁特性有很大的影响.SPM观测显示,随Ag层厚度增加磁畴尺寸呈现先减小后增加的趋势.VSM结果显示,矫顽力的变化与磁畴尺寸的变化趋势是一致的,x=3nm时,垂直膜面矫顽力达到最大.  相似文献   

6.
采用射频磁控溅射法在Si(111)基片上沉积了MnZn铁氧体薄膜,用X射线衍射仪(XRD)分析薄膜的物相结构,用振动样品磁强计(VSM)测量薄膜面内饱和磁化强度Ms和矫顽力Hc。结果表明:随着退火温度的升高,MnZn铁氧体薄膜的X射线衍射峰强度逐渐增强,且主峰逐渐由(311)峰变为(222)峰,沿(111)面取向生长明显。薄膜的饱和磁化强度和矫顽力均随着退火温度的升高而升高。  相似文献   

7.
在室温下,应用磁控溅射法制备了CoCrPt(25 nm)/Ag(40 nm)纳米颗粒薄膜,随后进行了退火.CoCrPt靶和Ag靶分别采用射频溅射和直流对靶溅射模式.用振动样品磁强计(VSM)研究了Ag衬底层对CoCrPt磁特性的影响,发现650℃退火后的样品,矫顽力达到最大.扫描探针显微镜(SPM)观测显示颗粒的尺寸随退火温度的升高而增加;X射线衍射(XRD)图样表明,样品具有六角密积结构.  相似文献   

8.
采用射频磁控溅射法在玻璃衬底上制备ZnO薄膜.用X射线衍射仪(XRD)、扫描电镜(SEM)对不同衬底温度下制备薄膜的相结构和表面形貌进行分析.结果表明,在衬底温度为400℃时制备的ZnO薄膜表面光滑,晶粒尺寸均匀,结构致密,且沿c轴择优生长.  相似文献   

9.
利用项目研制的烧结锅热风发生装置,进行了循环烧结的实验.研究了含氧量、温度对循环烧结的影响,研究结果表明含氧量大于18%时,含氧量的提高对烧结过程的改善不显著,而在加入部分生石灰后采用100~250℃热废气循环烧结,不仅可以改善转鼓强度等技术指标,还能有效的降低燃料单耗.  相似文献   

10.
烧结温度对钢结合金微结构影响的研究   总被引:1,自引:1,他引:0  
钢结合金是以硬质相 (碳化物、氮化物等 )和钢作为粘结剂的一种耐磨合金 .早在本世纪五十年代末六十年代初就出现过 ,可是由于种种原因 ,始终未能发展起来 .进入八十年代中期 ,该领域的研究又开始活跃起来 .直到近年来 ,由于作为硬质合金粘结剂的钴稀缺 ,价格不断上涨 .此外 ,钨的资源也日益减少 ,迫使人们寻代新的替代用品 .因此 ,促使钢结合金的研究及开发重新得到发展 .美国、日本、瑞典、俄罗斯等国不断研究开发新的钢结合金品种 ,取得了不少新的进展 .例如拓宽了硬质相及粘结剂的品种 ;拓宽了钢结合金中硬质相的成份范围 ;制备工艺更趋…  相似文献   

11.
对采用不同温度烧结的Bi系2212相样品的R—T曲线测量表明,随着烧结温度的增高,R—T曲线发生由超导相向半导体相的转变,而且这种转变无法以CuO2面的结构畸变来解释.认为是因为烧结温度的不同导致了样品中载流子浓度的变化而引起的样品超导电性的变化.烧结温度升高,样品中的载流子浓度减小,导致了样品由超导相向半导体相的转变,与铜氧化物超导体相图所显示的规律性是一致的.  相似文献   

12.
针对支撑结构的引入对靶丸温度分布产生扰动这一问题,建立带不同靶丸支撑结构的三维低温靶模型,基于离散坐标辐射模型和Boussinesq假设,研究了支撑结构对靶丸温度特性的影响,并对比了不同支撑结构靶丸温差对黑腔内氦气压力变化的敏感程度,最后针对泡沫垫衬薄膜支撑研究了泡沫材料参数的影响规律。结果表明:支撑膜能显著降低黑腔内自然对流强度,薄膜支撑与两极支撑靶丸温度均匀性优于无支撑膜的充气管支撑和支撑杆支撑,薄膜支撑相比两极支撑靶丸温度均匀性略高;充气管直径越大,靶丸温度均匀性越差。基准工况下,薄膜支撑靶丸外表面最大温差最小,温度均匀性最好,两极支撑、充气管支撑及支撑杆支撑最大温差较薄膜支撑分别增大了5.92%、32.71%及17.99%;氦气压力升高,靶丸外表面温度均匀性逐渐恶化,薄膜支撑和两极支撑靶丸温差对氦气压力变化的敏感度更低;对于泡沫垫衬薄膜支撑,通过选用导热系数较大的泡沫材料并减小其厚度可获得较好的靶丸温度均匀性。该计算结果可为靶丸支撑结构的工程设计提供一定的理论支撑。  相似文献   

13.
综合比较工厂试验结果得到的微观结构和电气参数的差异,优化得到了适合作为高电压梯度ZnO电阻片的配方和工艺。研制的ZnO电阻片在1135。C电压梯度达到330V/mm,最小漏电流IL4uA。并研究了其致密化过程,运用SEM、电性能测试等手段,分析了烧结温度对其微观结构和电性能的影响。  相似文献   

14.
为了对比纳米HA与大颗粒或大晶粒HA作为骨填充材料在动物体内的实验效果,通过改变烧结工艺来获得大颗粒或大晶粒HA.扫描电镜检测结果表明,烧结温度对粒子尺寸的影响最为敏感:低于800℃烧结时,粒子长大缓慢甚至没有长大现象;超过900℃后,粒子迅速长大;1200℃烧结时,随烧结时间延长,晶粒呈现不规则长大,并出现二次再结晶现象。  相似文献   

15.
本文报道在不同温度(970—1050℃)下烧结的 Li-Ti-Zn 微波铁氧体样品的磁滞参数和穆斯堡尔谱.实验结果表明1030℃是这种微波铁氧体的最佳烧结温度.  相似文献   

16.
以碳酸氢铵做造孔剂,采用真空烧结法制备出生物多孔钛.研究了烧结温度对多孔钛显微形貌、显气孔率、抗压强度的影响.研究表明,提高烧结温度,有利于Ti晶体的发育,并提高制品抗压强度.  相似文献   

17.
研究了烧结温度和时间对Fe-3.1Mn-1.2Si-0.4C烧结刚性能与组织的影响,实验结果表明:提高烧结温度和延长烧结时间都能改善Fe-3.1Mn-1.2Si-0.4C烧结钢的机械性能;并使烧结试样由膨胀逐渐向收缩过渡,Fe-3.1Mn-1.2Si-0.4C烧结网在1100℃以上烧结时,由于有液相的出现,合金化过程可以被大大地提高,在烧结过程中,只有那些较小的硅锰母合金颗粒才能全部熔化,而那些尺  相似文献   

18.
用普通的电子陶瓷工艺制备了PbO-SrO-BaO-Nb2O5(PSBN)系统民陶瓷,研究了PSBN系统铁电陶瓷的介电性能与烧结温度的关系,XRD分析表明:PSBN系统铁电陶瓷的主晶相是Pb0.7Ba0.3Nb2O6(PBN)、Sr0.5Ba0.5Nb2O6(SBN)和Ba0.27Sr0.75Nb2O5.78(BSN),将这一复杂的化学系统看作三元系固熔体,其中PBN、SBN和BSN各相比例随烧结温  相似文献   

19.
对Fe2O3-SiO2-CaO—Al2O3-MgO五元体系在准化学平衡条件的液相生成过程进行了研究。采用光学显微镜、X—Ray和SEM,对不同温度下体系液相生成量及成分进行了分析。结果表明:温度越高液相生成量越多,液相成分随温度的增加发生改变,温度对镁元素的微观分布影响较小,M如在赤铁矿为主要原料的烧结体系中会与Fe2O3结合生成MgO·Fe2O3矿物;随着温度的升高SFCA中的Fe2O3含量升高,液相量增加;Al2O3含量升高,利于交织结构的铁酸钙(FC)的形成,可提高烧结矿强度。  相似文献   

20.
为了探究烧结温度对铜基粉末冶金摩擦材料性能的影响,通过四种温度(825、850、875、900 ℃)热压烧结,成功制备了铜基粉末冶金摩擦材料。研究了材料的微观组织、密度、硬度、抗压强度、摩擦性能,由此得到材料的较佳烧结温度。结果表明,在四种烧结温度下,材 料中的各元素能均匀地分布在Cu基体中。随着烧结温度的升高,密度、硬度、抗压强度和摩擦因数都先增大后减小,而孔隙率和磨损量先减小后增大。Cr能改善Cu与C之间的湿润性,提高金属基体与非金属组元之间的结合强度,从而使材料的密度增大;Ni、Mn能向Cu中扩散,形成固溶体,阻碍位错运动,提高材料的硬度。铜基粉末冶金摩擦材料较佳烧结温度为850 ℃,此时的密度为6.17 g/cm3,孔隙率为8.62%,维氏硬度为81.2,抗压强度为172.8 MPa,摩擦因数为0.37,磨损量为0.074 g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号