共查询到17条相似文献,搜索用时 78 毫秒
1.
针对概率假设密度滤波权值更新效率低下的问题, 提出一种并行局部概率假设密度粒子滤波?通过聚类将粒子按目标估计个数进行分类并添加标签,通过一步预测和跟踪门限将观测区域划分为目标存在区域和不包含目标的杂波区域,修正目标所在的局部区域杂波强度公式,独立并行地计算每个目标所在区域的局部概率假设密度?仿真结果表明,并行的局部概率假设密度粒子滤波时效性更高,误差更低? 相似文献
2.
目标数未知或随时间变化是红外弱小目标跟踪技术的一个难题。为解决这个问题,提出了基于概率假设密度滤波的红外弱小目标跟踪算法。从数据关联的角度出发,将目标集看作随机集,利用概率假设密度滤波的数据关联算法实现目标数未知的红外弱小目标的跟踪。实验结果表明,在杂波环境下,概率假设密度滤波可以稳健地跟踪红外弱小目标的目标状态和目标数目。 相似文献
3.
针对使用现有粒子滤波算法对非线性/非高斯离散时间系统的状态估计精度较低的问题,提出了一种新的粒子滤波算法——容积粒子滤波(CPF)算法.新算法使用容积数值积分原则直接计算非线性随机函数的均值和方差,产生粒子滤波算法的建议性密度函数,获得所需要的带权粒子,进而通过计算粒子均值,获得系统状态的最小均方误差估计.CPF算法由于产生粒子时使用了最新的测量信息,因而提高了对系统状态后验概率的逼近程度.仿真实验结果表明,CPF算法的估计误差约是标准粒子滤波算法和扩展粒子滤波算法误差的1/5和1/3,是无味粒子滤波(UPF)算法的估计误差的1/2,且运行时间只有UPF算法的1/3. 相似文献
4.
使用PHD粒子滤波跟踪量子以满足特定生物信息学应用的需求,并结合簇标记技术实现多目标航迹关联.针对簇标记技术存在的"标签漂移"问题,提出一种N记忆簇标记方法用于控制算法对不稳定目标的敏感度.它通过记忆和对比过去N个时刻的目标状态可以有效降低目标频繁出没对目标估计和跟踪带来的干扰.实验结果表明该方法可以对具有高随机动态的量子目标实现较准确、鲁棒的航迹跟踪. 相似文献
5.
针对多目标跟踪算法对多目标状态提取的需求,提出了一种基于Dirichlet分布的概率假设密度滤波器多目标状态提取方法.该算法利用负指数Dirichlet分布的不稳定性来极大似然估计多目标状态;利用期望极大化算法搜寻极大似然解,同时利用Dirichlet分布驱使不相关分量消亡;为了平衡成功初始化与减少算法时间开销的要求,利用k-d树初始化Dirichlet分布.仿真结果表明,基于Dirichlet分布的概率假设密度滤波器多目标状态提取算法在多目标跟踪中优于已有算法. 相似文献
6.
一种新的多机动目标跟踪的GMPHD滤波算法 总被引:1,自引:0,他引:1
针对多机动目标跟踪的传统数据关联算法约束条件苛刻、估计精度低、计算量大等问题,提出了一种基于随机集理论的非数据关联的多机动目标跟踪算法.该算法将高斯混合概率假设密度(GMPHD)滤波与"当前"统计模型的优点相结合,绕过了棘手的数据关联问题,能高效处理目标数较大的机动跟踪问题.在漏检、虚警、多机动目标交叉杂波复杂环境下进行了仿真实验,结果表明,该算法具有较高的跟踪精度和稳健的跟踪性能. 相似文献
7.
视频合成孔径雷达具有高分辨与高帧速率成像的特点,可以连续获取地面感兴趣区域目标近似视频的信息,
为基于SAR图像的目标识别与跟踪技术的快速发展奠定了基础。为了满足日益复杂的应用需求,多目标跟踪技术逐渐发展成熟,针对多目标跟踪过程中每个运动目标的状态都具有空时变性,并且目标的数量具有随机性的难题,首先建立了基于随机有限集的多目标跟踪算法,在此基础上讨论了贝叶斯框架下的概率假设密度算法,并在高斯混合模型下研究并实现了高斯混合概率假设密度滤波算法,进而实现了基于RFS的多目标跟踪算法,在复杂环境背景下验证了该算法的有效性。 相似文献
8.
针对标准粒子滤波算法粒子退化和贫化问题,提出了一种基于高斯-牛顿迭代思想的容积卡尔曼粒子滤波算法.该算法利用当前量测信息,使用容积数值积分原则通过以一组确定的点集和相应的权值直接计算非线性随机函数的均值和方差,避免了求导运算,并通过Gauss-Newton迭代方法对容积卡尔曼滤波(CKF)的非线性最小二乘问题进行求解,减小了线性化误差,以此来产生粒子滤波算法的重要性密度函数,使得迭代CKF产生的重要性密度函数更接近于真实后验概率分布,从而改进了滤波性能.仿真结果表明,与粒子滤波和CPF滤波相比,迭代CKF粒子滤波具有更高的估计精度. 相似文献
9.
提出了基于序贯蒙特卡罗概率假设密度滤波器( SMC -PHDF)的视觉多目标跟踪算法.W4算法对观测场景进行背景建模和运动目标检测,获取可能目标在观测场景中的位置信息作为PHDF的输入.SMC-PHD滤波器对检测结果进行滤波,实现对观测场景中运动目标数量和目标状态的估计.传统SMC-PHDF由于不对目标进行标记避免了数... 相似文献
10.
多扩展目标的高斯混合概率假设密度滤波器 总被引:1,自引:0,他引:1
针对多扩展目标跟踪中状态信息难以估计的问题,提出了一种可以估计扩展目标运动状态和形状信息的多扩展目标高斯混合概率假设密度(RHM-GMPHD)滤波器。首先利用描述凸星形扩展目标量测源分布的随机超曲面模型和传感器量测方程,建立扩展目标运动状态及形状信息与量测之间关系的伪量测函数;然后结合扩展目标状态预报信息,推导了扩展目标状态更新方程,递推地对扩展目标运动状态及形状信息进行估计跟踪。此外,还建立了Jaccard距离来度量RHMGMPHD滤波器对目标形状的估计性能。与联合概率数据关联(JPDA)滤波器和GMPHD滤波器相比,RHM-GMPHD滤波器不仅可以估计凸星形扩展目标的形状信息,并能有效提高对目标数和运动状态的估计精度。仿真实验表明,RHM-GMPHD滤波器对质心估计的均方根误差分别约为JPDA和GMPHD滤波器的1/3和1/2,对目标数的估计接近真实值,对形状估计的Jaccard距离一般小于0.2。 相似文献
11.
概率假设密度滤波的谱聚类目标状态提取方法 总被引:1,自引:0,他引:1
提出了一种谱聚类目标状态提取方法来实现概率假设密度(PHD)滤波中序贯蒙特卡罗(SMC)实现方式的多目标状态估计.该方法利用PHD滤波SMC实现方式输出的大量的加权粒子点间的相似度关系建立相似矩阵,通过变换得到拉普拉斯矩阵,进而对拉普拉斯矩阵进行特征分解,以实现粒子点的聚类,再在每类中寻找粒子的聚类点作为多目标状态的估计值,同时为了减小计算量,利用Nystrm逼近方法求解特征向量.仿真实验表明,PHD滤波的谱聚类目标状态提取方法的估计精度比k均值目标状态提取方法提高了60%以上. 相似文献
12.
《高技术通讯(英文版)》2016,(4):376-384
The GM-PHD framework as recursion realization of PHD filter is extensively applied to multi-target tracking system .A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper .First, a novel cubature Kalman probability hypothesis density filter is designed for single sensor measure -ment system under the Gaussian mixture framework .Second , the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix .Furthermore, to take the advantage of consistency fusion strategy , fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement .Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed .Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sen-sor multi-target tracking . 相似文献
13.
用于机动目标跟踪的多模型概率假设密度滤波器 总被引:2,自引:0,他引:2
针对概率假设密度(PHD)滤波器在多目标跟踪问题中无法解决目标发生较大机动时的目标丢失问题,提出了一种多模型概率假设密度(MM-PHD)滤波器.这种MM-PHD滤波器在粒子PHD滤波器的基础上,使用多模型方法对滤波器中每个描述目标状态的粒子的状态进行更新,再将更新后的粒子代入传统的PHD滤波器中用于估计目标的PHD的分布.该滤波器结合PHD滤波器和多模型方法的特点,可用于目标数未知的多机动目标跟踪,且对目标的数量和状态的估计更加准确.多机动目标跟踪的仿真实验表明,与已有方法相比,该滤波器对目标数的估计与真实情况基本一致,描述多目标状态估计误差的Wasserstein距离值降低了50%以上. 相似文献
14.
提出一种粒子群优化平方根强跟踪容积卡尔曼滤波算法,并将其用于水下应答器辅助航位推算组合导航系统. 以强跟踪滤波器为理论框架,结合容积卡尔曼滤波器,设计了平方根强跟踪容积卡尔曼滤波器. 提出一种改进的粒子群算法,将粒子两两为一对分成若干对,每进化一次后,比较两个粒子的代价函数值,代价函数值较优的粒子,搜索方向侧重于群体历史经验,代价函数较差的粒子,搜索方向侧重于自身历史经验. 将改进的粒子群算法用于求取强跟踪滤波器的渐消因子. 仿真结果表明在系统模型不准确的情况下所提算法依然能够有效跟踪状态变化,比传统的容积卡尔曼滤波器具有更高的滤波精度和稳定性. 相似文献
15.
研究将粒子滤波(PF)理论应用于无线层析网络中的时变多目标跟踪(MTT).传统的基于无线层析成像(RTI)的时变多目标跟踪方法存在延迟问题,即与真实的时变目标数目相比,估计所得时变目标数目存在滞后,并且跟踪精度较低.基于PF的时变多目标跟踪方法利用维度可变的粒子来估计目标数目,实现目标跟踪.该方法不存在延迟问题,并且能提高目标的跟踪性能.研究通过在一个9.5 m×9.5 m的监测区域内进行实验来验证该算法的有效性.实验结果表明基于RTI的时变多目标跟踪方法的最佳子模式分配(OSPA)误差为0.485 m,而基于PF的时变多目标跟踪方法的OSPA误差为0.362 m,其性能比基于RTI的方法提高了25%. 相似文献
16.
摘要:
针对利用声图像实现水下多目标跟踪问题,提出一种改进的粒子滤波多目标跟踪算法.通过引入联合概率数据关联算法,建立了联合概率数据关联 粒子滤波算法模型,使粒子权值中得以反映量测与目标轨迹间的关联概率,有效保证了各目标跟踪轨迹的连续性.采用了包含距离及角度的双重跟踪门得到确定矩阵,使跟踪精度得以提高.补充了轨迹起始及轨迹终结方法,以对跟踪过程进行完善.最后,通过水下多目标跟踪试验,对比分析了不同数据关联算法的试验结果,验证了所提方法的有效性,为基于前视声纳的多目标跟踪提供了一种更为有效的方式.
关键词:
联合概率数据关联; 粒子滤波; 目标跟踪; 前视声纳
中图分类号: TP 39
文献标志码: A 相似文献
17.
针对复杂场景下目标跟踪算法存在的跟踪目标丢失漂移等问题,提出一种粒子滤波框架下基于卷积神经网络(convolutional neural network,CNN)的目标跟踪算法.该算法采用CNN提取跟踪目标的高层语义特征,并引入离线训练方式,提高训练效率以及特征提取的泛化能力;利用粒子滤波算法框架,实现目标运动状态的有效估计;同时采用长时与短时两种更新策略,并引入困难样本挖掘的在线训练方式,以适应目标外观变化与背景干扰等复杂情况.仿真实验结果表明本文算法能有效适应遮挡、光照、剧烈运动等场景.与多个当前的跟踪算法在公开测试样本下进行了结果比较和分析,验证了本算法在解决跟踪目标丢失漂移等问题上的有效性. 相似文献