首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
提出了一种企业破产事件抽取框架,该框架可以从法律裁定书等卷宗资料中检测出相应的法律事件,并抽取出与事件相关的结构化要素信息.该框架结合从法院所获得的裁定书等卷宗信息,运用远程监督技术来构建模型训练数据;再通过命名实体识别技术对句级别的文书进行序列标注;最后结合自定义的事件触发词表与事件字典,运用事件抽取技术对法律文书进行事件识别,并给出对应事件的结构化信息.实验结果表明本框架能够取得较高的事件识别精度,是一种有效的企业破产事件抽取框架.  相似文献   

2.
为了实现中文医药领域症状信息的自动化抽取,提出了一种基于条件随机场的拆分症状文本特征的抽取方法,将症状文本自动识别拆分为症状主体和症状表现形式自动识别两个部分,再将这两种识别结果作为特征加入到症状信息抽取过程中。信息抽取的结果包含完整的症状信息二元组:症状主体和症状表现形式。实验表明,该方法在症状信息抽取的准确率及查全率上有较大提升。  相似文献   

3.
新兴媒体时代的发展使大量的信息涌入了我们的视线和大脑,广大网名用户在面对网上的信息时需要找寻符合自己的资料,在这种情况下,信息抽取发展起来了。国内的信息抽取技术起步时间较短,又由于中文信息的复杂性,所以在中文信息抽取领域,此技术还不是特别的成熟。在本文中,作者对基于规则的中文人名抽取技术进行了初步探索和研究。  相似文献   

4.
针对关系抽取任务中文本特征提取不充分及核心词表现弱的问题,提出了一种多特征注意力卷积神经网络的实体关系抽取方法.利用位置、词性及实体标签作为输入特征,充分捕获文本信息,构建注意力模型,获得单词与目标实体之间的相关性,并将注意力机制与卷积神经网络相融合以进行关系预测.以新疆旅游领域为研究对象,总结归纳15种实体关系.采用...  相似文献   

5.
为了从来源不同的威胁情报中提取关键信息,方便政府监管部门开展安全风险评估,针对威胁情报文本中英文混杂严重以及专业词汇生僻导致识别困难的问题,在BiGRU-CRF模型基础上,提出了一种融合边界特征以及迭代膨胀卷积神经网络(IDCNN)的威胁情报命名实体识别方法.该方法根据人工构造的规则词典将边界清晰的实体例如英文单词进行转化以减少模型在处理较长文本时容易造成的信息损失,通过IDCNN和双向门控循环单元(BiGRU)进一步提取了文本的局部和全局特征.通过在威胁情报语料库上进行实验,结果表明所提的方法模型在相关评价指标上均优于其他模型,F值达到87.4%.  相似文献   

6.
命名实体识别(Named Entity Recognition, NER)作为自然语言处理的基本任务之一,一直以来都是国内外研究的热点.随着金融互联网的快速发展,迄今为止,金融领域中文NER不断进步,并得以应用到其他金融业务中.为了方便研究者了解金融领域中文NER方法的发展状况和未来发展趋势,进行了一项相关方法的研究和总结.首先,介绍了NER的相关概念和金融领域中文NER的特点;然后,按照金融领域中文NER的发展历程,将研究方法分为基于字典和规则的方法、基于统计机器学习的方法和基于深度学习的方法,并详细介绍了每类方法的特点和典型模型;接下来,简要概括了金融领域中文NER的公开数据集和工具、评估方法及其应用;最后,向读者阐述了目前面临的挑战和未来的发展趋势.  相似文献   

7.
为在不依赖特征工程的情况下提高中文领域命名实体识别性能,构建了BLSTM-CRF神经网络模型。首先利用CBOW模型对1998年1月至6月人民日报语料进行负采样递归训练,生成低维度稠密字向量表,以供查询需要;然后基于Boson命名实体语料,查询字向量表形成字向量,并利用Jieba分词获取语料中字的信息特征向量;最后组合字向量和字信息特征向量,输入到BLSTM-CRF深层神经网络中。实验结果证明,该模型面向中文领域命名实体能够较好的进行识别,F1值达到91.86%。  相似文献   

8.
随着信息技术的发展,电子文档在糖尿病领域的信息记录中得到了大量应用,通过自动化技术对这些电子文档进行分析具有重大的意义.由于现有的命名实体识别方法在糖尿病领域中识别准确率偏低.为了改变这种现状,提出了双层的双向长短时记忆神经网络条件随机场模型(Bi-LSTM-CRF),并将其应用到糖尿病领域命名实体识别任务中.实验结果...  相似文献   

9.
针对数控机床(computer numerical control,CNC)故障领域命名实体识别方法中存在实体规范不足及有效实体识别模型缺乏等问题,制定了领域内实体标注策略,提出了一种基于双向转换编码器(bidirectional encoder representations from transformers,BERT)的数控机床故障领域命名实体识别方法。采用BERT编码层预训练,将生成向量输入到双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)交互层以提取上下文特征,最终通过条件随机域(conditional random field,CRF)推理层输出预测标签。实验结果表明,BERT-BiLSTM-CRF模型在数控机床故障领域更具优势,与现有模型相比,F1值提升大于1.85%。  相似文献   

10.
命名实体识别是自然语言处理和信息提取的基本任务,传统专家命名实体识别方法存在过度依赖人工特征标注和分词效果、专家简介中大量专业新词无法识别等问题.本文提出一种基于多特征双向门控神经网络结构并结合条件随机场模型进行领域专家实体抽取方法.该方法首先通过构建领域专家语料库以训练实体抽取模型;接着,使用Bert方法进行字嵌入表...  相似文献   

11.
为验证基于深度学习的命名实体识别框架在反恐领域的有效性,参照ACE 2005实体标注规范,制订了细粒度反恐实体标签体系,构建了反恐实体语料集Anti-Terr-Corpus;提出基于MacBERT-BiLSTM-CRF的实体识别模型,通过能减少预训练和微调阶段差异的MacBERT(masked language modeling as correction bidirectional encoder representations from transformers)预训练语言模型获得动态字向量表达,送入双向长短时记忆(bidirectional long short-term memory, BiLSTM)和条件随机场(conditional random field, CRF)进行上下文特征编码和解码得到最佳实体标签;替换框架中的预训练语言模型进行对比实验。实验表明该模型可以有效获取反恐新闻中的重要实体。对比BiLSTM-CRF模型,MacBERT的加入提高了24.5%的F_1值;保持编码-解码层为BiLSTM-CRF时,加入MacBERT比加入ALBERT(a lite BERT)提高了5.1%的F_1值。可见,深度学习有利于反恐领域实体识别,能够利用公开反恐新闻文本为后续反恐形势预判服务,同时有助于反恐领域信息提取、知识图谱构建等基础性任务。  相似文献   

12.
中文嵌套命名实体关系抽取研究   总被引:1,自引:0,他引:1  
为了解决嵌套命名实体关系抽取研究缺乏相关语料库这一问题, 在现有中文命名实体语料库的基础上, 将人工标注与机器学习相结合来抽取其语义关系。人工标注一个中文嵌套命名实体关系语料库, 然后分别采用支持向量机和卷积神经网络等方法, 进行中文嵌套实体关系抽取实验。实验结果表明, 在人工标注实体的中文嵌套命名实体语料上, 嵌套实体关系抽取的性能非常好, F1指数达到95%以上, 而在自动识别实体上的抽取性能尚不理想。  相似文献   

13.
在前期基于图网络的模型基础上,引入角色指代信息,提出融合角色指代的多方对话关系抽取模型.在构建图节点时加入角色节点,将其与对应角色指代的词节点进行连接,并使用图注意力网络进行编码.在DialogRE数据集上的实验效果与基线模型相比,F1值在验证集上提升2.9%,在测试集上提升4.6%.  相似文献   

14.
针对传统问答系统答案抽取方式对答案片段的分词和上下文语义理解准确性的依赖严重,抽取过程耗费大量的人力和时间的问题,提出采用分步抽取答案的方法,先从答案片段中抽取包含答案的句子,再从提取的答案句中进行最终答案的抽取方式。在答案句抽取过程中使用Bi-LSTM( Bi-directional Long Short-Term Memory)和Max Pooling 结合的方法构建答案句抽取模型。实验结果表明,在答案句的抽取中,该模型的MRR( Mean Average Precision) 指数接近0. 75。  相似文献   

15.
随着互联网的迅速发展和Web2.0概念的提出,问答系统以直接返回给用户精确的答案而逐渐成为一种新的信息检索技术.由于问句都是自然语言的形式,涉及到对问句的语义理解及相似度的判断.本文提出了一种基于问句的表层和语义相似度计算方法,通过聚类去除冗余信息,再通过熵的特征计算权值,最后融合多种特征计算问句相似度,进行答案抽取....  相似文献   

16.
在特定领域问答系统中,领域知识直接影响问答效果.本文提出了一种领域问答答案提取方法,以问题分析得到问题查询、问题类型及答案类型为基础,借助领域知识检索获得答案提取候选段落.对于定义性问题,结合关键词加权权重计算方法及句子与问题语义相似度方法,对候选段落或句子与问题相关度排序,提取相关度高的句子或段落作为答案,对于数词或列表性实体问题,借助命名实体识别,提取与问题中心相关的领域实体作为答案.在云南旅游领域进行了答案提取实验,结果表明该方法具有较好的效果.  相似文献   

17.
医疗文本具有实体密度高、句式冗长等特点,简单的神经网络方法不能很好地捕获其语义特征,因此提出一种基于预训练模型的混合神经网络方法。首先使用预训练模型获取动态词向量,并提取实体标记特征;然后通过双向长短期记忆网络获取医疗文本的上下文特征,同时使用卷积神经网络获取文本的局部特征;再使用注意力机制对序列特征进行加权,获取文本全局语义特征;最后将实体标记特征与全局语义特征融合,并通过分类器得到抽取结果。在医疗领域数据集上的实体关系抽取实验结果表明,新提出的混合神经网络模型的性能比主流模型均有提升,说明这种多特征融合的方式可以提升实体关系抽取的效果。  相似文献   

18.
基于条件随机场的中医命名实体识别   总被引:1,自引:0,他引:1  
中医医案蕴藏着丰富的知识,如何完成对海量医案的自动标注以便对其进行知识挖掘显得尤为重要.针对明清古医案中症状、病机的自动识别标注问题,采用了基于条件随机场(CRF)的方法,提出数据清洗以及缩减合并词性以减少特征空间规模.最后,通过仿真实验将该方法与最大熵、支持向量机这两种统计方法进行对比.结果表明:该方法在针对明清古医案中症状、病机这类中医命名实体识别具有明显的优势.  相似文献   

19.
随着"智能油田"的建设加快,构建基于海量石油数据的智能分析系统意义重大。然而,由于石油生产过程中产生的文本数据往往无结构且类型多样,从中抽取关键信息进行分析成为一个研究热点,而信息抽取又需要高质量的语义实体做支撑。根据这一特定问题,提出基于命名实体识别(Named Entity Recognition,NER)技术针对石油非结构化文本进行信息抽取,构建双向长短时记忆(Bidirectional Long Short-Term Memory,Bi LSTM)网络模型提取语料特征,并结合条件随机场(Conditional Random Field,CRF)做分类器,构建了基于Bi LSTM+CRF的高精度NER模型,针对石油工业领域的非结构化文本进行命名实体抽取。通过在修井作业文本数据集上进行对比实验表明,本方法具有较高的精确率和召回率。  相似文献   

20.
基于传统卷积框架的实体抽取方法,由于受到卷积感受野大小的控制,当前词与上下文的关联程度有限,对实体词在整个句子中的语义欠考虑,识别效果不佳.针对这一问题,提出一种基于残差门卷积的实体识别方法,利用膨胀卷积和带残差的门控线性单元,从多个时序维度同步考虑词间的语义关联,借助门控单元调整流向下一层神经元的信息量,缓解跨层传播...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号