首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these “ciliary” proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes’ influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of “cilia” proteins as a means to demonstrate the potential non-ciliary roles for these proteins.  相似文献   

2.
Protein intrinsic disorder as a flexible armor and a weapon of HIV-1   总被引:2,自引:2,他引:0  
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.  相似文献   

3.
The CLE family of plant polypeptide signaling molecules   总被引:4,自引:0,他引:4  
Polypeptide ligands have long been recognized as primary signaling molecules in diverse physiological processes in animal systems. Recent studies in plants have provided major breakthroughs with the discovery that small polypeptides are also involved in many plant biological processes, indicating that the use of polypeptides as signaling molecules in cell-to-cell communication is evolutionarily conserved. The CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR)-related (CLE) proteins are currently the best understood family of small polypeptides in plants. The recent isolation of MCLV3 from Arabidopsis and TDIF from a Zinnia cell culture system indicates that biologically active CLE polypeptides are produced by post-translational proteolysis and modification, similar to peptide hormone production in animals and yeast. Here, we review exciting discoveries involving the identification of the CLE proteins and their functions in various aspects of plant development, including restriction of stem cell accumulation by CLV3 and inhibition of xylem differentiation by TDIF.  相似文献   

4.
5.
Toxins have been shown to have many biological functions and to constitute a rich source of drugs and biotechnological tools. We focus on toxins that not only have a specific activity, but also contain residues responsible for transmembrane penetration, which can be considered bioportides—a class of cell-penetrating peptides that are also intrinsically bioactive. Bioportides are potential tools in pharmacology and biotechnology as they help deliver substances and nanoparticles to intracellular targets. Bioportides characterized so far are peptides derived from human proteins, such as cytochrome c (CYCS), calcitonin receptor (camptide), and endothelial nitric oxide synthase (nosangiotide). However, toxins are usually disregarded as potential bioportides. In this review, we discuss the inclusion of some toxins and molecules derived thereof as a new class of bioportides based on structure activity relationship, minimization, and biological activity studies. The comparative analysis of the amino acid residue composition of toxin-derived bioportides and their short molecular variants is an innovative analytical strategy which allows us to understand natural toxin multifunctionality in vivo and plan novel pharmacological and biotechnological products. Furthermore, we discuss how many bioportide toxins have a rigid structure with amphiphilic properties important for both cell penetration and bioactivity.  相似文献   

6.
The physiological metabolism of proteins guarantees that different cellular compartments contain the appropriate concentration of proteins to perform their biological functions and, after a variable period of wear and tear, mediates their natural catabolism. The equilibrium between protein synthesis and catabolism ensures an effective turnover, but hereditary or acquired abnormalities of protein structure can provoke a premature loss of biological function, an accelerated catabolism and diseases caused by the loss of an irreplaceable function. In certain proteins, abnormal structure and metabolism are associated with a strong tendency to self-aggregation into a polymeric fibrillar structure, and in these cases the disease is not principally caused by the loss of an irreplaceable function but by the action of this new biological entity. Amyloid fibrils are an apparently inert, insoluble, mainly extracellular protein polymer that kills the cell without tissue necrosis but by activation of the apoptotic mechanism. We analyzed the data reported so far on the structural and functional properties of four prototypic proteins with well-known biological functions (lysozyme, transthyretin, β2-microglobulin and apolipoprotein AI) that are able to create amyloid fibrils under certain conditions, with the perspective of evaluating whether the achievement of biological function favors or inhibits the process of fibril formation. Furthermore, studying the biological functions carried out by amyloid fibrils reveals new types of protein-protein interactions in the transmission of messages to cells and may provide new ideas for effective therapeutic strategies. Received 9 November 1998; received after revision 15 January 1999; accepted 15 January 1999  相似文献   

7.
The GPI-anchor and protein sorting   总被引:8,自引:0,他引:8  
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are a diverse class of proteins that are anchored to the membrane solely via means of a posttranslational lipid modification, the GPI-moiety. Since their discovery in the late 1970s, years of research have provided significant insight into the functions of this ubiquitous modification. In addition to the structure and biosynthesis of the GPI-moiety, perhaps the best-studied feature of this glycolipid is its ability to impart characteristic membrane-trafficking properties to the proteins that it anchors. Study of the mechanism of sorting of GPI-APs has brought to light the importance of lateral heterogeneities in cell membranes, termed rafts, in biological sorting processes. The focus of this review is to examine the emerging role of the GPI-anchor and mechanisms involved in GPI-AP sorting in the context of intracellular trafficking pathways.  相似文献   

8.
9.
C M Chuong 《Experientia》1990,46(9):892-899
The migration of cerebellar granule cells from the external granular layer to the internal granular layer is mediated by the radical Bergmann glial fiber. Recent works have shown that cell adhesion molecules, extra-cellular matrix proteins and proteolytic enzymes or their activators are involved in this process. Immuno-localization studies showed differential temporal and spatial expression patterns of different adhesion molecules, their isoforms, and post-translational modification during different stages of granule cell migration. Functional perturbation experiments using cerebellar explant cultures demonstrated that several adhesion molecules as well as plasminogen activator are involved in granule cell migration and are required in different stages. Other systems used to study granule cell migration including dissociated microwell cultures and granule cell deficient mouse mutants are discussed in the context of adhesion molecules. The results accumulated so far suggest that the migration of granule cells is a complex process in which the cooperation of a group of molecules with different functions, some for adhesion some for de-adhesion, are required to fulfill the different needs during the migratory course.  相似文献   

10.
Biological functions of the ING family tumor suppressors   总被引:11,自引:0,他引:11  
  相似文献   

11.
The bone marrow microenvironment plays an important role in promoting hematopoietic progenitor cell proliferation and differentiation and the controlled egress of these developing hematopoietic cells. The establishment of long-term bone marrow cultures, which are thought to mimic hematopoiesis in vitro, and various stromal cell lines has greatly facilitated the analysis of the functions of this microenvironment. Extracellular matrix (ECM) molecules of all three categories (collagens, proteoglycans and glycoproteins) have been identified as part of this microenvironment and have been shown to be involved in, different biological functions such as cell adhesion and anti-adhesion, binding and presentation of various cytokines and regulation of cell growth. It is suggested that these matrix molecules in combination with cytokines are crucial for compartmentalization of the bone marrow. Although many cell adhesion molecules have been characterized on the surface of hematopoietic progenitor cells, the nature of cellular receptors for the ECM components is less well defined. During leukemia, many immature blood cells are released from bone marrow, but it is not yet known whether these abnormalities in hematopoiesis are also caused by an altered microenvironment or altered composition of its extracellular matrix. The elucidation of the involvement of specific ECM-isoforms and as yet not characterized ECM components and their receptors in the bone marrow will certainly help towards a better understanding of these phenomena.  相似文献   

12.
Mast cell tryptase,a still enigmatic enzyme   总被引:2,自引:0,他引:2  
Tryptases constitute a subfamily of trypsin-like proteinases, stored in the mast cell secretory granules of all mammalian organisms. These enzymes are released along with other mediators into the extracellular medium upon mast cell activation/degranulation. Among the trypsin-like enzymes, tryptases are unique: they are present as active enzymes in the mast cell granules, but display activity only extracellularly, and have a specificity which is much more restricted than trypsin. Tryptases are mostly tetrameric, and in only few organisms (not in humans) are they inhibited by endogenous inhibitors in vitro. The enzymatic and molecular properties of tryptases are far better characterized that any of their plausible biological functions. On the basis of its structural and functional features it could be predicted that tryptase would not degrade a large number of proteins in vivo due to low accessibility to the tetramer central pore where the active sites face inwards. Although their biological function has not yet been clarified, tryptases seem to be involved in a number of mast cell-mediated allergic and inflammatory diseases. In particular, the involvement of tryptase in asthma, an inflammatory disease of the airways often caused by allergy, has been proposed. Here we review the present knowledge on the structure-function relationship of tryptases from different organisms, with special emphasis on human enzymes, and on their role in a variety of pathophsyiological processes.Received 29 October 2003; received after revision 3 December 2003; accepted 11 December 2003  相似文献   

13.
R Lallier 《Experientia》1977,33(10):1263-1267
The analysis of sea urchin egg fertilization shows that several phenomena common to other biological systems are involved: cell recognition, cell fusion, exocytosis and initiation of mitotic activity. Both the role of calcium ions in cell fusion and exocytosis and the function of the cell surface in the initiation of mitotic activity appear to have general applicability. The study of fertilization can contribute to the elucidation of these processes and, reciprocally, progress in this field can help to advance our understanding of the mechanisms of fertilization in sea urchins and other organisms.  相似文献   

14.
Summary The analysis of sea urchin egg fertilization shows that several phenomena common to other biological systems are involved: cell recognition, cell fusion, exocytosis and initiation of mitotic activity. Both the role of calcium ions in cell fusion and exocytosis, and the function of the cell surface in the initiation of mitotic activity appear to have general applicability. The study of fertilization can contribute to the elucidation of these processes and, reciprocally, progress in this field can help to advance our understanding of the mechanisms of fertilization in sea urchins and other organisms.  相似文献   

15.
Summary The migration of cerebellar granule cells from the external granular layer to the internal granular layer is mediated by the radial Bergmann glial fiber. Recent works have shown that cell adhesion molecules, extra-cellular matrix proteins and proteolytic enzymes or their activators are involved in this process. Immuno-localization studies showed differential temporal and spatial expression patterns of different adhesion molecules, their isoforms, and post-translational modification during different stages of granule cell migration. Functional perturbation experiments using cerebellar explant cultures demonstrated that several adhesion molecules as well as plasminogen activator are involved in granule cell migration and are required in different stages. Other systems used to study granule cell migration including dissociated microwell cultures and granule cell deficient mouse mutants are discussed in the context of adhesion molecules. The results accumulated so far suggest that the migration of granule cells is a complex process in which the cooperation of a group of molecules with different functions, some for adhesion some for de-adhesion, are required to fulfill the different needs during the migratory course.  相似文献   

16.
17.
Emerging roles of the SUMO pathway in development   总被引:1,自引:1,他引:0  
  相似文献   

18.
The angiogenins   总被引:8,自引:0,他引:8  
The angiogenic and other biological functions of the angiogenins, members of the pancreatic RNase superfamily of proteins, are reviewed in the context of their primary and tertiary structures. The ribonucleolytic activity and interactions with the placental ribonuclease inhibitor have seen much study in the last few years. The mechanism of the angiogenic activity of angiogenin has recently been postulated as involving multiple interactions with other proteins through specific regions on the molecular surface of angiogenin. These molecular partners include heparin, plasminogen, elastase, angiostatin, actin and most importantly a 170-kilodalton receptor on subconfluent endothelial cells. The existence of the latter receptor was established in conjunction with a mitogenic activity of angiogenin on subconfluent cells. The levels of angiogenin in various physiological and disease states are summarized, including various studies on pregnancy and angiogenin. Correlations are seen between states of enhanced angiogenesis and angiogenin levels. An overview of the relationship of angiogenin and the other RNases of the superfamily showed that their genes all are in relative close proximity on human chromosome 14. Examination of the many expressed sequence tags published in the public databanks, for angiogenin and the other RNases, revealed that angiogenin and RNase-4 (the most evolutionarily conserved RNase), share various identical 5′-untranslated regions on their sets of messenger RNAs, suggesting that their genes are in very close proximity on chromosome 14 and that they are products of differential splicing. This in turn suggests that, in both humans and mice, expression of these two proteins is under identical control, with obvious implications for their biological activities. The evolutionary history of the angiogenins is examined briefly on the basis of the protein sequences of the human, rabbit, pig, two bovine and four mouse angiogenins, and two mouse angiogenin pseudogene sequences. The discrepancy between the conventional requirement for conservatism in structure to allow multimolecule interactions, and the actual fast-changing sequence of the angiogenins, in concert with the wide-ranging activity even in birds, of human angiogenin, is discussed.  相似文献   

19.
20.
The role of thrombospondin-1 in apoptosis   总被引:3,自引:0,他引:3  
The thrombospondins are a family of extracellular proteins that participate in cell-to-cell and cell-to-matrix communication. They regulate cellular phenotype during tissue genesis and repair. Five family members, each representing a separate gene product, probably exist in most vertebrate species. Like most extracellular proteins, the thrombospondins are composed of several structural domains that are responsible for the numerous biological functions that have been described for this protein family. Considerable progress has been made towards understanding the function of thrombospondins. The role of thrombospondin in the process of apoptosis or programmed cell death has recently come into focus. In this review we will concentrate on the role of thrombospondin-1 in the broad field of apoptotis research. Received 5 December 2001; received after revision 28 March 2002; accepted 28 March 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号