首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
用化学共沉淀法制备了高磁导率MnZn铁氧体,研究了ZnO过量和不同烧结温度对样品磁性能的影响。随着ZnO含量的增加,样品的饱和磁化强度逐渐下降,而样品的磁导率逐渐增加,且样品的截止颇率fr大于500kHz.  相似文献   

2.
通过测量不同样品的磁导率, 研究Al2O3掺杂对高磁导率MnZn铁氧体材料的影响. 结果表明, 添加Al2O3可抑制ZnO的挥发, 从而提高材料的起始磁导率, 降低比温度系数, 增加磁导率的频率范围.  相似文献   

3.
采用化学共沉淀法和真空烧结工艺制备了尖晶石型锰锌铁氧体系列样品,研究了配方及烧结工艺对样品性能的影响。结果表明:样品在1370℃烧结能获得较好的磁性能;增加Fe2O3含量有利于提高饱和磁感应强度;在适当范围内增加ZnO含量有利于提高初始磁导率,但居里温度Tc随之下降;当Xzao=24%时,样品的磁导率μi=6369,饱和磁感应强度Bs=304mT,矫顽力Hc=4.3A/m。  相似文献   

4.
通过溶胶—凝胶法制备了Co掺杂ZnO稀磁半导体纳米颗粒,利用X射线衍射仪、透射电子显微镜和振动样品磁强计等测试手段对Co掺杂ZnO稀磁半导体样品进行了结构和磁性表征.结果表明,随着烧结温度的升高,样品的固溶度逐渐增加.当样品的烧结温度为800℃时,样品为单相的ZnO结构.磁性测试结果表明,Co掺杂ZnO稀磁半导体在室温下具有铁磁性.  相似文献   

5.
采用微波水热法在80~140℃的生长温度下合成了一系列银(Ag)掺杂的氧化锌(ZnO)样品,掺杂液中Ag+质量分数分别为0、0.2%、0.5%和1%,并采用X射线衍射(XRD)、扫描电镜(SEM)、室温荧光(PL)等方法详细研究了Ag的掺杂对ZnO的结构、形貌和光学性能的影响。XRD结果显示,在低温条件下,高浓度Ag掺杂的ZnO结晶质量最好,而在高温条件下,纯ZnO的结晶质量优于Ag掺杂样品;SEM结果表明,ZnO为空心纳米结构,纯ZnO样品随着温度的升高,样品的形貌由中空的棒状结构逐渐转化为多层的片状结构,而随着Ag掺杂浓度的增加,中空的六方柱状结构逐渐解体,样品颗粒减小,这一现象符合介孔形成的基本理论——柯肯达尔效应;PL光谱表明,随着Ag掺杂浓度的增大,ZnO的可见光发光强度呈现出先增强后减弱的趋势,能带的带隙则逐渐变窄。Ag的掺杂浓度和样品生长温度对于ZnO的结构、形貌和光学性能起了关键性作用。  相似文献   

6.
不同氧氩比对于ZnO薄膜的结构及其荧光发光的影响。随着氧氩比的增加,ZnO薄膜(002)面的衍射峰明显增高,且变得更尖锐,薄膜的晶化得到改善。所有制备的样品均出现了波长位于446nm左右的蓝光峰。随氧分压逐渐增大,样品的PL谱中蓝光峰相对强度比增加。  相似文献   

7.
研究了多孔泡沫金属的磁导率,建立了电沉积金属磁导率的计算模型.利用石蜡熔融的方法,得到了电沉积所得的多孔泡沫金属的孔隙率;利用振动样品磁强计对结构参数相同、磁导率不同的三种多孔泡沫金属进行了测试,得到了多孔泡沫金属及电沉积金属的相对磁导率,根据等效磁阻的原理,对电沉积金属相对磁导率进行了仿真计算,计算结果与实验相近;结果表明,建立的模型可以用来计算电沉积金属的相对磁导率;多孔泡沫金属的磁导率随着电沉积金属磁导率的增加而增加,随着孔隙率的增加而减小,为研究多孔泡沫金属的磁性能提供了理论和实验依据.  相似文献   

8.
研究了Nb2O5掺杂的ZnO陶瓷在低温下导电特性,结果表明,低温状态下,随着Nb2O5掺杂量的增加,ZnO电阻率降低,不同温度下烧结的ZnO样品,烧结温度越高,电阻率愈小,同一烧结温度下,不同烧结时间的ZnO样品,随着烧结时间的增加,电阻率愈小.  相似文献   

9.
 研究射频磁控溅射技术制备的CeO2掺杂ZnO薄膜的结构及紫外光吸收性能。结果显示,ZnO(002)晶面的晶面间距增大,由于晶格畸变的增加导致薄膜中的内应力也相应增加,随着CeO2掺入量的增加,引起ZnO晶格的进一步松弛,因此ZnO将呈混晶方式生长;由于ZnO的晶粒同时有多个生长方向,因而抑制了ZnO晶粒(002)取向生长度的速度,导致了晶粒尺寸的逐渐降低,薄膜的C轴择优取向性随CeO2含量的升高而降低。CeO2掺杂样品与纯ZnO薄膜的吸收谱的形状没有大的改变,吸收峰形基本一致,掺CeO2使薄膜的紫外吸收显著增强,吸收边明显向短波方向移动,吸收边的斜率有微小提高,吸收峰宽度略微增大,吸收强度增加。  相似文献   

10.
以氧化镁(MgO)掺杂的氧化锌(ZnO)陶瓷靶作为溅射靶材,采用射频磁控溅射方法在玻璃衬底上制备了掺镁ZnO(ZnO:Mg)薄膜样品.通过X射线衍射仪和可见-紫外光分光光度计的测试表征,研究了溅射时间对ZnO:Mg薄膜晶体结构和光学性质的影响.结果表明:ZnO:Mg薄膜的结构和性能与溅射时间密切相关.随着溅射时间的增加,ZnO:Mg薄膜(002)晶面的织构系数减小、(110)晶面的织构系数增大,对应的可见光波段的平均透过率降低.溅射时间为15 min时,ZnO:Mg薄膜样品具有最佳的(002)择优取向生长特性和最好的透光性能.同时ZnO:Mg薄膜样品的禁带宽度随溅射时间增加而单调增大.与未掺杂ZnO薄膜相比,所有ZnO:Mg薄膜样品的禁带宽度均变宽.  相似文献   

11.
锰锌铁氧体的磁损耗研究   总被引:1,自引:0,他引:1  
应用功耗图示分离法研究了锰锌铁氧体在不同频率、掺杂、磁感应强度和温度下磁损耗的3种组成成分及其变化情况.结果表明:掺杂适量CaO、SiO2的锰锌铁氧体不仅其涡流损耗比重大大下降,而且磁滞损耗也大为降低;在一定温度范围内,烧结温度对样品的功耗影响不大;在低频率段,仍然存在剩余损耗.  相似文献   

12.
掺杂对高磁导率MnZn铁氧体磁特性的影响   总被引:5,自引:0,他引:5  
研究了CaCO3和Bi2O3掺杂及烧结气氛对高磁导率MnZn铁氧体磁特性及微观结构的影响.研究结果表明,由于CaCO3存在于晶界,合适的CaCO3掺入量会使晶界明显,晶粒均匀,起始磁导率增加.同时由于Ca^2 与Si^4 共同形成高电阻的晶界层,能够改善材料的起始磁导率的频率特性.由于Bi2O3在烧结过程中分布在晶界,掺入Bi2O3促进了晶粒生长.为了减小烧结样品内部和外部氧含量的差别,必须通过控制烧结气氛,保证Zn^2 尽可能少挥发,同时防止Fe和Mn离子变价,从而避免起始磁导率下降.  相似文献   

13.
温敏锰锌铁氧体的材料组成与居里温度的关系的研究   总被引:1,自引:0,他引:1  
温敏铁氧体是近 1 0多年来才发展起来的具有较低居里温度的软磁铁氧体材料 ,可用来制作各种控温灵敏的磁性温敏传感器。本文通过研究温敏铁氧体的材料组成与居里温度的关系 ,发现在 Fe2 O3 含量一定时 ,居里温度在一定范畴内与 Zn O含量呈线性关系 ,并在大量实验的基础上给出了计算居里温度的经验公式  相似文献   

14.
PAN和MnZn铁氧体复合基质手性材料电磁性质   总被引:1,自引:0,他引:1  
以导电聚苯胺与MnZn铁氧体的复合物为基质,以碳纤维螺旋体为手性掺杂体,制备了复合手性材料.用微波圆波导法在8.5~11.0GHz内测量了手性材料的旋波性、圆二色性及电磁参数,分析了MnZn铁氧体浓度对实验结果的影响  相似文献   

15.
采用SrTiO3溶胶对MnZn铁氧体进行表面改性,得到MnZn铁氧体/SrTiO3复合粉体,以PTFE为基体,制备了的MnZn铁氧体/SrTiO3/PTFE复合材料。探讨了表面改性和热处理对复合材料电磁性能的影响。结果表明:复合材料在低频阶段具有较高磁导率和介电常数以及较低磁损耗和介电损耗,表面改性和热处理可以在一定程度上提高复合材料的电磁性,复合材料的介电频率响应符合德拜弛豫理论。  相似文献   

16.
采用传统氧化物工艺,用精铁矿粉代替Fe2O3、用Mn3O4代替MnCO3制备出高性能功率软磁MnZn铁氧体,研究了精铁矿粉和Mn3O4制备MnZn铁氧体的固相反应及预烧温度、烧结温度和掺杂对样品磁性能的影响,选择合适的配方及制备工艺,用精铁矿粉和Mn3O4可以制备出综合性能达到日本TDK PC30材料性能水平的功率软磁MnZn铁氧体。此项目研究成功可使功率铁氧体成本大幅下降,促进精铁矿资源深度开发,具有显著的社会经济效益。  相似文献   

17.
利用溶胶一凝胶柠檬酸盐自燃烧法(sol-gel auto-combustion)制备出了低温度系数(αμ=O.2×10-6/℃)的高磁导率(μ=6500)纳米软磁Mn-Zn铁氧体材料。探究了该方法及工艺条件对软磁铁氧体性能的影响,并分析了掺杂少量co2+有利于提高温度稳定性的原因。  相似文献   

18.
选用高纯度原料,采用传统的陶瓷制备工艺.合理确定原材料各组分配比,并优化添加CaCO3、TiO2、Nb2O5、V2O5等添加剂.根据MnZn铁氧体在各温区固相反应的机理,研究出烧结工艺与气氛的适配,研制出了高性能的高Bs低功耗MnZn铁氧体材料.  相似文献   

19.
添加剂对锰锌铁氧体纳米晶水热制备的影响   总被引:1,自引:1,他引:0  
均匀的共沉淀前驱体是通过水热法制备单相锰锌铁氧体的前提.通过加入添加剂,制备了无杂相、团聚程度低、结晶度完好、粒度分布窄、粒径为10~20nm的单相以及具有较好磁性能的锰锌铁氧体纳米晶.此外,对产物进行了热稳定性研究,结果表明其具有良好的烧结活性,烧结温度在空气中为870℃,在氩气中为1150℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号