共查询到18条相似文献,搜索用时 46 毫秒
1.
设G是简单连通图,G的庀.正常全染色f称为是邻点可区别的,如果对G的任意相邻的两顶点,其点的颜色及关联边的颜色构成的集合不同,称f为G的k-邻点可区别全染色.这样的后中最小者称为G的邻点可区别全色数.本文考虑了图的中间图的邻点可区别全色数,并确定了路、圈、星图和扇图的中间图的邻点可区别全色数. 相似文献
2.
3.
在一个简单图的基础上,连接任两个最短路长为k的两个顶点,得到原图的k幂.根据幂图的结构性质,利用穷染,递推,换色的方法,对树的k幂和圈的2幂的进行邻点可区别全染色,并得到了邻点可区别全色数.特别的,在存在两个相邻最大度点时,按k的3剩余类进行分类,在k≠3a,a为偶数的情况下,树的k幂的邻点可区别全色数为6. 相似文献
4.
5.
6.
研究了图K_3~n和D_(n,4)的邻和可区别全染色.根据图K_3~n和D_(n,4)的结构特点,利用穷染的方法得到了图K_3~n和D_(n,4)的邻和可区别全色数. 相似文献
7.
8.
9.
10.
讨论笛卡儿积图P_2×P~n当n≡0(mod 4)时邻点可区别Ⅰ-均匀全染色问题,根据该类图的结构性质,通过构造法给出它们的邻点可区别Ⅰ-均匀全染色方法,从而有效地确定了其邻点可区别Ⅰ-均匀全色数为4. 相似文献
11.
设c(G)是无向简单图G(V,E)的顶点染色数,证明了:若︱S︱p/2且︱S︱=p-m,则图G不存在第p-q类图,其中:q≥2m+1,m≥3且m∈Z~+;若︱S︱=p-4,则小x(G)≤p-3;若︱S︱=p-4,则x(G)≤4■(G)+■2(G)-1. 相似文献
12.
花图的邻点可区别关联色数 总被引:1,自引:0,他引:1
轮Wr+1(r≥3)是一个r阶圈加上一个新的顶点,再把圈上每个顶点与新顶点连上边所得到的图,新顶点与圈上顶点之间的边称为辐边,圈上的边称为边缘边。所谓花图Fr,m,n(r≥3,m≥1,n≥2m+1)是在轮Wr+1中,在每条辐边上分别嵌入m-1个新点,在每条边缘边上分别嵌入n-2m-1个新点所得到的图。研究花图Fr,m,n(r≥3,m≥1,n≥2m+1)的邻点可区别关联着色,确定了部分花图的邻点可区别关联色数,并给出了剩余花图的邻点可区别关联色数的上界。 相似文献
13.
图染色的基本问题是确定各种染色法的色数.图G和H的直积图G(×)H是一类很重要的图积,给出了直积图Cm(×)Pn的全染色的方法,得到其全色数Xn(CM(×)Pn)={4n=2 5n≥3,并进一步推广到图的正常全染色,得到其全色数Xn(G(×)Pn)-{△(G)+2n=2 2△(G)+1n≥3. 相似文献
14.
15.
16.
17.
18.