共查询到20条相似文献,搜索用时 15 毫秒
1.
丁卫平 《甘肃联合大学学报(自然科学版)》2002,16(2):5-9
研究脉冲时滞Logistic方程x′(t) =p(t) ( 1 -ex(t-τ) ) ,t≥ 0 ,t≠tk,x(t+ k) -x(tk) =bkx(tk) ,k∈N 的全局吸引性 ,获得了方程每一解N(t)趋于 0的充分条件 . 相似文献
2.
丁卫平 《烟台大学学报(自然科学与工程版)》2002,15(1):5-9
研究脉冲广义时滞Logistic方程N'(t)=p(t)N(t)(1-N(t-τ))^α,t≥0,t≠tk,N(t^ k)=N(tk)^1 bk,k∈N,的全局吸引性,获得了方程每一解N(t)趋于1的充分条件,推广和改进了有关脉冲时滞微分方程的某些巳知结果。 相似文献
3.
考虑具有脉冲的时滞微分方程:N′(t)=r(t)N(t)1-N(t-τ)1-λN(t-τ), t≥0,t≠tk,k∈N,lnN(t+k)-lnN(tk)=bklnN(tk), k∈N,( )其中,τ>0,λ∈(0,1),r∈C([0,+∞),R+),bk>-1,且{tk}满足0相似文献
4.
刘洁纯 《湖南工程学院学报(自然科学版)》2000,10(2):8-12
考虑具有脉冲的时滞Logistic方程{x‘(t)=r(t)(1-e^x(t-τ))t≥t0,t≠tk,k=1、2……(*)x(t^ k)-x(tk)=bkx(tk)k=1、2……其中τ>0,r(t)∈C([t0, ∞],R^ );-1<bk≤0;且{tk}满足t0<t1<t2<…<tk<…,limtk k→∞= ∞。本文给出了(*)的解是全局吸引的充分条件。 相似文献
5.
李迈龙 《湖南理工学院学报:自然科学版》2003,16(3):7-10,16
考虑脉冲时滞微分方程 x’(t)=p(t)(1-e~(x(t-τ)),t≥0,t≠t_k,(1) x(t_k~+)-x(t_k)=b_kx(t_k),k∈N 的全局吸引性,获得了保证方程每一解趋于0的充分条件。其中τ>0,b_k>-1,P(t)是非负、分段连 续函数。 相似文献
6.
7.
一类强迫时滞微分方程的全局吸引性 总被引:1,自引:0,他引:1
丁卫平 《西南师范大学学报(自然科学版)》2002,27(4):481-485
研究强迫时滞微分方程x′(t) =p(t) 1-ex(t-τ)1+λex(t-τ) +r(t)t≥ 0 (1)的全局吸引性 ,其中p(t) ∈C([0 ,+∞ ) ,(0 ,+∞ ) ) ,τ >0 ,λ>0 .获得了保证每一解收敛于 0的充分条件 .定理 1 假设p(t) ,r(t) ,0 <λ≤ 1满足∫+∞0 p(t)dt =+∞ ∫+∞0 r(t)dt 收敛 limt∞r(t)p(t) =0且存在δ >0 ,对充分大的t有∫tt-τp(s)ds≤δ(1+λ) (δ- 12 ) (δ- λ1+λ) ≤ 1则 (1)的每一解x(t)当t +∞时趋于 相似文献
8.
考虑具有脉冲的时滞Logistic方程其中τ>0,r(t)∈C([t0,+∞),R+);-1<bk≤0;且{tk}满足t0<t1<t2<…<tk<…,limtk=+∞,给出了(*)的解是全局吸引的充分条件. 相似文献
9.
10.
刘兴元 《邵阳学院学报(自然科学版)》2007,4(2):6-9
考虑具有脉冲的时滞泛函微分方程{ x'(t)+a(t)x(t)=p(t)(I-e^x(t-t)),t≥0,t≠tk, x(t k^+)-x(tk)=bk x(tk),k∈N 其中a(t),p(t)∈C([0,+∞),[0,+∞)),τ〉0,bk〉-1,k∈N获得了方程每一解x(t)满足lim t→∞ x(t)=0的充分条件,将结果应用于脉冲方程及脉冲的红血球生长模型,所得结果是新的. 相似文献
11.
本文研究非线性时滞微分方程dx/dt+p(t)f(x(t-τ))=0的零平衡解的全局吸引性,通过运用Lyapunov泛函方法,得到保证该方程全局吸引性的充分条件. 相似文献
12.
13.
梁志清 《广西民族大学学报》2004,10(3):55-58
考虑时滞微分方程x'(t)=x(t)r(t)[a-bxp(t-τ)-cxq(t-τ)],其中a>0,b>0,q>p>0,τ>0,r(t)∈C[(0,∞),(0,∞)],获得方程的正解全局吸引的条件. 相似文献
14.
本文研究了非线性时滞微分方程x(t)=-μx(t)+∑i=1^nbif(x(t-σi))=g(t,x(t-τ1),...,x(t-τm))的全局吸引性,并得出相关结论。 相似文献
15.
16.
具时滞Logistic型竞争模型的全局吸引性 总被引:2,自引:0,他引:2
罗万成 《西南师范大学学报(自然科学版)》2001,26(3):237-242
研究具时带Logistic型竞争模型正平衡点的全局吸收性,在分析系统一致持久性基础上,通过估计解的最终波动范围得到了正平衡点全局吸引的条件。 相似文献
17.
研究广义时滞Logistic方程N′(t) =r(t)N(t) (1-N(g(t) ) ) α,t 0 ,其中r(t) >0 ,g(t) ∈C([0 ,+∞ ) ,R) ,g(t) 相似文献
18.
主要研究一类拟单调时滞微分方程渐近性态,给出方程存在全局吸引正平衡态的充分条件.推广了已有的相应结论. 相似文献
19.
本文考虑时滞差分方程xn+1=axn+β^.xn/1+x^kn-1,n=,1,…。(1)的全局吸引性,这里l是正整数,K∈(0,∞),并且0〈α〈1〈α+β。部分地回答了文献「1」中提出一分开问题11;1.(b),获得了方程(1)的一切{xn}收敛于正常平衡常数N=(α+β-1)/1-α)^1/k的充分条件。 相似文献
20.
一阶脉冲时滞微分方程解的全局存在性 总被引:1,自引:0,他引:1
考虑具有变时脉冲的时滞微分方程初值问题x′(t)=f(t,x(t-h)),t≠τk(x),Δx=Ik(x),t=τk(x),k=1,2,…,x(t)=φ0(t),t∈[t0-h,h0],x(t0 0)=x0,获得了其解全局存在的充分条件 相似文献