共查询到20条相似文献,搜索用时 0 毫秒
1.
为了提高风电场输出功率的预测精度,在保证安全操作的前提下,建立了一种基于集合经验模态分解(EEMD)、改进引力搜索算法(IGSA)、最小二乘支持向量机(LSSVM)相结合的风电功率组合预测模型.首先运用EEMD算法将风电功率时间序列分解成一系列复杂度差异明显的子序列;其次利用相空间重构(PSR)对已分解好的子序列进行重构,对重构后的每个子序列分别建立IGSA-LSSVM预测模型,为分析不同核函数构造LSSVM的差异性,建立了8种核函数LSSVM预测模型,利用IGSA算法求解其模型;最后以中国内蒙古地区的某一风电场为算例,仿真及验算结果表明,利用IGSA算法寻优得到的指数径向基核函数核参数和惩罚因子构建的LSSVM模型具有较高的预测准确性;与EEMDWNN,EEMD-PSO-LSSVM等5种常规组合模型相比,所提出的指数径向基核函数的EEMD-IGSA-LSSVM组合模型能有效、准确地进行风电功率预测. 相似文献
2.
近年来,中国的风力发电产业高速发展。然而风力发电具有不稳定性,风电功率超短期预测结果的准确性直接影响到电网安全有效的运行。为了进一步提高风电功率超短期预测的精确度,提出了长短期记忆网络-注意力模型(AM-LSTM)风电功率预测模型,该模型将长短期记忆网络(long-term and short-term memory,LSTM)和注意力模型(attention model,AM)相结合, LSTM网络能够处理好风速、风向等时间序列变量与风电功率之间的非线性关系,注意力模型能够优化LSTM网络的权重,从而使预测结果更加准确。采用真实的风电场历史数据进行实验,结果表明:提出的AM-LSTM预测模型能够有效利用多变量时间序列数据进行风电场发电功率的超短期预测,比传统的BP神经网络和LSTM网络具有更精确的预测效果。该预测模型为风电场地电力调度提供了科学参考。 相似文献
3.
针对短期风电功率预测关键气象因素影响程度的差异和单一模型预测精度不足的问题,提出一种基于近邻成分分析(neighborhood components analysis, NCA)特征加权和Stacking集成预测的短期风电功率预测模型。考虑气象特征对风电功率影响程度不同,利用NCA对气象特征进行加权,将加权特征作为模型输入,强化关键特征的影响程度;在此基础上,构建多个基预测器预测风电功率,并利用结合器将预测结果融合,建立Stacking集成预测模型。算例分析表明,以加权特征作为输入的Stacking集成预测模型具有更高的短期风电功率预测精度。 相似文献
4.
功率预测对提高风电电能质量、减少风电并网时对电网的冲击起着重要作用.针对风电功率数据特征,提出一种基于改进变分模态分解(Improved Variational Mode Decomposition,IVMD)的长短期记忆神经网络(Long-Short Term Memory Network,LSTM)的风电功率预测算法,并利用布谷鸟(Cuckoo Search,CS)算法对LSTM进行超参数寻优.首先,通过相关性分析,对风电场10类数据进行特征筛选,确定与功率相关性最大的两类数据作为模型的输入数据.接着,利用IVMD计算最大包络线峰度,确定变分模态分解的最佳分解参数,将原始风速序列进行分解,得到时间尺度各异的本征模态分量(Intrinsic Mode Functions,IMF).最后,针对LSTM神经网络模型的超参数优化困难、难以得到最优解等问题,提出采用CS算法对关键超参数进行寻优,建立了IVMD-CS-LSTM预测模型,得到了风电功率短期预测结果.采用实际风电场数据对算法进行测试,与常用预测算法比较,预测结果有更高的精度. 相似文献
5.
受数值天气预报信息影响,风电功率变化具有较强的随机波动性,传统单一预测模型精度较低,难以满足现实预测需求。为此,提出基于LSTM-XGboost组合的超短期风电功率预测方法。首先,基于风电场的气象数据,采用皮尔逊相关系数法筛选与风电功率强相关的气象数据,建立风电功率预测模型数据集;然后,将归一化处理的数据集作为LSTM(long short-term memory)和XGboost (extreme gradient boosting)的模型输入,分别构建LSTM和XGboost的超短期风电预测模型,在此基础上,采用误差倒数法对LSTM和XGboost的预测数据进行加权构建组合预测模型;最后,以张家口某示范工程风电场实际运行数据验证组合模型的有效性。结果表明,相较于其他4种单一预测模型,组合模型具有更高的预测精度。 相似文献
6.
随着风电装机容量的持续增长,风力发电的间歇性和随机性对电网造成的不利影响越来越明显.因此,有效的风电功率预测是解决大规模风电并网的关键问题之一.文章提出一种椭圆轨道模型对风电功率进行超短期预测.首先,采用去趋势波动分析法对样本数据进行平滑处理,解决风电功率数据突变的问题;然后,应用椭圆轨道模型对风电功率进行超短期预测.采用湖南某风电厂实际运行的4组数据进行验证,实验结果表明:椭圆轨道模型的预测误差在可接受范围之内,为超短期风电功率预测提供了一种有效方法. 相似文献
7.
近年来,风电装机规模逐年增加,风电数据采集量呈现规模化增长,面对海量多维、强波动的风电数据,风电功率预测精度仍面临一定的挑战。为提高风电功率预测精度,提出了基于卷积神经网络(convolutional neural networks, CNN)-长短期记忆网络(long short-term memory, LSTM)和梯度提升学习(light gradient boosting machine, lightGBM)组合的超短期风电功率预测方法。首先,分别建立CNN-LSTM和lightGBM的风电功率超短期预测模型。其中,CNN-LSTM模型采用CNN对风电数据集进行特征处理,并将其作为LSTM模型的数据输入,从而建立CNN-LSTM融合的预测模型;然后,采用误差倒数法对CNN-LSTM和lightGBM的预测数据进行加权组合,建立CNN-LSTM-lightGBM组合的预测模型;最后,采用张北曹碾沟风电场的风电数据集,以未来4 h风电功率为预测目标,验证了组合模型的有效性。预测结果表明:相较于其他3种单一模型,组合模型具有更高的预测精度。 相似文献
8.
9.
《内蒙古大学学报(自然科学版)》2016,(1)
主要介绍了基于趋势分析的内蒙古电网风电功率超短期预测系统的研究与应用情况.这一系统将物理方法与统计方法相结合,单个风电场基于历史数据、实时数据与未来的气象预报数据进行学习与预测,区域预测考虑整个区域空间分布的所有实时测风资料,进行空间相关分析.研究结果表明,该系统预测精度高,完全满足电网调度要求. 相似文献
10.
《东北师大学报(自然科学版)》2017,(1)
建立了风电功率预测系统并提高其预测精度和预测速度.分析影响风机出力的主要因素并结合风电场实测风速数据和环境参数,提出了一种基于粒子群优化的SVR风电功率超短期预测模型,该模型可以有效地优化支持向量回归机(SVR)的主要参数.通过与遗传算法优化的预测模型(GA-SVR)进行比较,发现该预测模型在超短期风电功率预测上有较高的预测精度和运算速度. 相似文献
11.
为进一步提高风电功率预测精度,提出一种基于麻雀搜索算法(SSA)优化VMD参数的组合预测方法。首先,使用麻雀搜索算法对VMD参数进行优化,并利用优化后的VMD对数据进行分解;其次,结合灰色关联分析法和熵权法对环境变量进行相关性分析,选择相关性最高的影响因素与分解得到的各模态分量组合作为LSTM预测模型的输入,获得更为精确的预测结果;最后,建立基于非参数核密度估计(NKDE)的风电功率概率预测模型,实现对风电功率预测结果不确定性的有效量化。结果表明,所提组合模型的MAE,RMSE和MAPE比VMD-LSTM模型的分别下降了39.51%,33.22%和40.39%。SSA-VMD-LSTM-NKDE组合模型不仅能够有效提高确定性预测的精度,而且还能够实现对风电功率预测结果不确定性的有效量化,为风电功率预测提供了科学决策依据。 相似文献
12.
针对短期风电功率预测,将风电输出功率作为时间序列信号,由于其所具有波动性、非平稳性的特点,提出一种基于经验模态分解(EMD)、粒子滤波(PF)和广义回归神经网络(GRNN)的组合预测模型。首先,利用EMD对风电功率序列进行分解,获得各个相对平稳的模态分量;然后,将分解得到高离散度的数据采用PF进行分析处理,低离散度的数据采用GRNN进行分析处理,其中,通过粒子群算法(PSO),根据各低离散度数据自身特点优化GRNN的平滑因数,以进一步提高其预测性能和精度;最后,通过线性叠加各分量的预测结果得到最终风电功率的预测值。结果表明,与PSO-GRNN和单一GRNN结构相比,EMD-PF-GRNN预测模型的预测误差降低了6%左右,预测精度更高,可以更好的预测风电功率。 相似文献
13.
针对风电功率预测(WPF)问题,提出一种基于离散小波变换(DWT)、时间卷积网络(TCN)和长短期记忆(LSTM)神经网络的混合深度学习模型(DWT-TCN-LSTM),对超短期风电功率进行预测.将DWT-TCN-LSTM模型分别与差分整合移动平均自回归(ARIMA)模型,支持向量回归(SVR)模型,长短期记忆神经网络模型和卷积长短期记忆(TCN-LSTM)混合模型进行对比实验,通过对称平均绝对百分比误差(SMAPE),均方根误差(RMSE)和平均绝对误差(MAE)3种评价指标值对各个模型进行评价.实验结果表明:DWT-TCN-LSTM模型具有较好的预测性能. 相似文献
14.
鉴于风功率预测是风电并网的关键环节之一,风力发电具有波动性、间歇性、随机性特点,首先利用小波变换对历史风功率数据进行分频段分析,然后根据风功率数据高低频的特点分别利用径向基神经网络建立预测模型,最后通过小波重构获得预测信号.通过算例分析,验证了该预测方法具有较高的准确性和实用性. 相似文献
15.
针对BP神经网络动态性能的不足、适应性较差的问题,提出了基于自适应Elman神经网络的短期风电功率预测模型。通过对比不同隐含层数的Elman预测模型的预测误差,选取最小误差的隐含层数作为自适应Elman预测模型的隐含层数;根据不同的训练集和预测集的输入,自动调节Elman隐含层节点数,实现隐含层节点数的自适应,寻求具有最佳隐含层节点数的预测模型,提高了风电功率预测精度。 相似文献
16.
随着我国风电产业迅速发展,风电并网规模不断扩大,准确预测风电场输出功率是降低风电波动对电网影响、提高电能质量、保证电网稳定运行的有效途径.本文采用箱型分析及热卡填充的方法对数据集中的异常数据进行清洗与重构.采用遗传算法与EEMD分解算法相结合的方式改进BP算法,并且根据不同时间尺度预测结果对比,相对于传统预测模型而言,... 相似文献
17.
为了提高风电功率预测精度,提出了一种基于变分模态分解(VMD)和改进的最小二乘支持向量机(LSSVM)的短期风力发电功率预测新模型。利用VMD将功率历史数据分解成趋势分量、细节分量和随机分量以降低原始数据的复杂性和不平稳性,然后建立IBA-LSSVM预测模型,利用改进蝙蝠算法(IBA)对最小二乘向量机的参数进行优化,并分别对各个子模态进行预测,叠加子模态的预测结果以得到最终的发电功率预测值。对宁夏某风电厂功率预测结果证明了该模型的有效性,通过不同预测模型的对比验证了模型具有较高的预测精度。 相似文献
18.
为了提高风力发电功率预测的准确性,建立了基于CEEMDAN分解的SMA算法优化LSSVM的短期风电功率组合预测模型。首先,采用完全集合经验模态分解(CEEMDAN)对原始风电功率数据进行分解与重构。随后,为了进一步优化最小二乘向量支持机模型(LSSVM)的参数,引入了黏菌算法(SMA)优化,通过调整惩罚参数和核参数来提高模型性能,最后,构建多种对比模型对比分析表明CEEMDAN-SMA-LSSVM模型预测精度最高,预测结果更接近真实值。研究可用于风电场短期风电功率预测使用。 相似文献
19.
为了提高风电功率预测精度,提出了一种完全集成经验模态分解(complete ensemble empirical mode decomposition adaptive noise, CEEMDAN)、极限学习机(extreme learning machine, ELM)和改进天牛须搜索算法(improved beetle antennae search algorithm, IBAS)的组合预测模型来预测风电功率。引入动态惯性权重改进天牛的位置更新方式,提高天牛须搜索算法的寻优能力。在预测过程中,首先通过CEEMDAN对原始风电功率数据进行预处理,将非平稳信号分解为一组按照频率和振幅大小排列的序列分量,减少数据波动带来的预测误差。然后利用IBAS优化ELM构建预测模型,分别预测每个序列分量,最后叠加每个序列分量的预测值得到最终预测值。仿真结果表明,与其他预测模型相比,本预测模型预测精度最高,评价指标平均绝对误差(mean absolute error, MAE)、均方根误差(root mean square error, RMSE)、平均绝对百分比误差(mean absolute ... 相似文献
20.
风电功率预测对于风电场制定电力调度计划和维修计划具有十分重要的意义,利用改进小波包处理混频信息的能力,将风电功率分解成多个频率的子序列;再利用遗传神经网络组合模型分别对各子序列进行预测,且利用改进小波包对各子序列预测结果进行了重构得到实际的预测值;最后以安徽省某地区风电场风功率数据为依据验证模型,由仿真结果分析可见组合算法取得了良好的预测效果。 相似文献