共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
为了改变元数据创建还处于手动、半手动的现状,要提高Web页元数据的精确度。首先基于语义标注理念,以群体共享的形式对Web页语义信息进行标注。生成过程中利用自动聚类算法,侧重于分析标注者不同特点对提高元数据质量所起的作用,提出了一种自动生成元数据方案。最后,通过实验证明,元数据结果会因标注者特点的不同而异,并且当标注者影响超过了临界值会提高元数据的质量。 相似文献
3.
基于矩阵分解和聚类提出一种协同过滤推荐算法. 先利用交替最小二乘(ALS)算法进行矩阵分解, 再利用改进的k-均值聚类算法弥补单一ALS算法在后期协同过滤阶段产生的大计算量问题, 解决了由于减小原始矩阵高维度、 高稀疏性带来的推荐准确度较低的问题, 极大提高了计算速度和推荐精度. 实验结果表明, 改进算法在推荐准确性上有明显提高. 相似文献
4.
5.
基于聚类法的协同神经网络学习算法 总被引:11,自引:1,他引:11
根据协同学理论的基本观点(模式识别的过程即为模式形成的过程),对构造出的协同神经网络在模式识别中的应用进行了研究.发现伴随向量的性能直接影响到模式识别的成功率,而伴随向量是由原型向量计算得到.所以原型向量的选择对识别结果有着十分重要的作用.提出了一种基于聚类算法的选择原型向量的方法.通过对近千个样本进行的模拟实验,结果证明这种基于聚类算法的原型向量选择方法很有效,使识别率有了较大的提高. 相似文献
6.
基于随机抽样和聚类特征的聚类算法 总被引:5,自引:0,他引:5
在分析BIRCH算法不足的基础上,提出了一种基于随机抽样和聚类特征的聚类算法(CLAP),该算法采用随机抽样技术,从数据库中抽取一部分数据进行聚类的预处理过程,这样大大降低了运行时间,CLAP通过设立索引树的叶节点的直径和聚类直径,提高了聚类的精度,并采用全局搜索和局部搜索相结合的方式,消除了输入顺序对聚类质量的影响.测试结果表明,CLAP算法不仅提高了聚类速度,而且改善了聚类质量。 相似文献
7.
针对推荐算法数据稀疏及聚类中心点敏感问题,提出了一种基于用户偏好和麻雀搜索聚类的协同过滤推荐算法.首先使用评分偏好模型对原用户项目矩阵进行修正,得到新的用户偏好-项目矩阵.利用麻雀搜索对聚类中心点进行优化,从目标用户所在簇内得到最近邻,提高了算法迭代速度,改善了聚类中心点敏感的问题.使用相似度公式对目标用户未评分项目进... 相似文献
8.
基于随机游走和聚类平滑的协同过滤推荐算法 总被引:1,自引:0,他引:1
协同过滤是电子商务推荐系统中被广泛采用的技术,然而数据稀疏性会影响协同过滤的推荐质量.本文针对数据稀疏问题提出一种基于随机游走和聚类平滑的两阶段协同过滤推荐算法.离线阶段:计算项目间相关性,提出了一个新的方法即通过加权累加各步转移概率对项目间相关性进行描述.根据得到的项目相关性矩阵对项目聚类,利用聚类信息对未评分数据进... 相似文献
9.
针对传统协同过滤算法数据稀疏性问题,提出一种基于用户和项目双向聚类的协同过滤推荐算法CFBC(Collaborative Filtering based on Bidirectional Clustering),将评分矩阵从用户和项目两个方向进行聚类,降低数据稀疏性的影响,提出一种改进的相似度计算方法P-J(Pearson-Jaccard)相关系数,提高相似度计算精度。实验证明,相较于传统协同过滤算法,该算法能有效提高推荐准确度。 相似文献
10.
校园无线网络产生大量用户位置数据,它使掌握用户行为轨迹、预测用户位置成为可能.协同过滤广泛用于预测和推荐系统中,但现有研究存在数据稀疏性和不适用于处理时空数据的缺点.本文提出基于聚类和时间权重的协同过滤位置预测算法.首先利用DBSCAN聚类算法对用户进行聚类,缓解数据稀疏性.然后在簇内计算用户-位置评分矩阵时引入时间权重,使用户近期的位置签到对预测有更大贡献.与传统协同过滤方法相比,该方法准确率提高9.1%,召回率提高5.2%,F1-SCORE提高7%. 相似文献
11.
12.
针对传统协同过滤推荐算法通常针对整个评分矩阵进行计算,存在效率不高的问题,提出一种基于K-medoids项目聚类的协同过滤推荐算法.该算法根据项目的类别属性对项目进行聚类,构建用户的偏好领域,使用用户偏好领域内的评分矩阵进行用户间相似度的计算,得到目标用户的最近邻居集,并生成推荐结果.与常用的K-means聚类方法相比,采用K-medoids方法对项目类别属性进行聚类,不仅克服了评分聚类可靠性不高的问题,而且算法还具有更好的鲁棒性.实验结果表明,该算法能有效提高推荐质量. 相似文献
13.
为解决传统协同过滤算法在产生推荐时实时性较差性问题,提出了一种基于蚁群模糊聚类的协同过滤推荐算法.该算法将分两个步骤产生推荐.离线时,应用蚁群模糊聚类技术,对基本用户进行聚类;在线时,利用已有的用户蚁群聚类寻找目标用户的最近邻居,并产生推荐.实验表明,基于蚁群模糊聚类的协同过滤推荐算法能提高推荐产生的速度,即实时性得到... 相似文献
14.
针对组织协同进化分类算法中样本数据集数量较大时对训练样本的学习不充分,分类的效率和准确性不高的问题,提出了一种将聚类融入了组织协同的进化算法.该算法在分析组织协同进化特征的基础上,形成聚类组织协同进化算法, 并将此算法应用于入侵检测问题中使得训练样本得到比较充分的学习.通过该算法对KDDCUP99数据集进行仿真对比实验,验证了该算法的有效性. 相似文献
15.
《中国科学技术大学学报》2016,(9)
随着推荐系统用户数量和服务项目增多,可扩展性问题成为推荐算法应用的瓶颈.目前,大部分推荐算法以及基于这些算法的改进主要集中在推荐质量上,随着系统规模扩大,暴露出实时推荐效率降低和运行耗时的缺点.针对这些问题,提出了一种基于最近邻聚类的协同过滤推荐算法.首先,该算法采用二分k-means算法把评分相似的用户划分到相同的类中,以此建立用户聚类模型.然后,从聚类模型中挑选出目标用户的最近邻居类作为检索空间.最后,从检索空间中搜索目标用户的最近邻居,由最近邻居的信息产生最终的推荐列表.实验结果表明,该算法在保持较高的推荐质量的同时可以显著提高推荐系统的效率,比传统的协同过滤算法可扩展性强. 相似文献
16.
《广西大学学报(自然科学版)》2020,(2)
针对传统的协同过滤推荐算法存在数据稀疏性、冷启动,影响推荐结果的准确性等问题,提出了一种改进的协同过滤推荐算法。使用基于随机梯度下降优化求解的矩阵分解方法,将原始矩阵分解为较低维的用户特征矩阵和特征产品矩阵;引进产品外部属性信息,运用谱聚类算法对产品聚类,构建属性—特征之间的映射关系,填充特征产品矩阵。所提出的算法不需要对原始评分矩阵进行数据填充,相较于传统的固定值填充方法,不需要系统提供大量的空间存储评分矩阵,并且在评分预测过程中采用降维技术,可以有效地缓解数据稀疏性对推荐结果准确性的影响。 相似文献
17.
《南京理工大学学报(自然科学版)》2019,(6)
为了克服传统协同过滤(CF)推荐方法数据稀疏和可扩展性差的不足,该文提出1种基于局部优化降维和聚类的协同过滤算法。采用局部优化的奇异值分解(SVD)降维技术和K-均值(K-means)聚类技术对用户-项目评分矩阵中的相似用户进行聚类并降低维度。利用近似差分矩阵表示评分矩阵的局部结构,实现局部优化。局部优化的SVD降维技术可以利用更少的迭代次数缓解CF中数据稀疏和算法可扩展性差的问题。K-means聚类技术可以缩小邻居集查找范围,提高推荐速度。将该文算法与基于Pearson相关系数的协同过滤算法、基于SVD的协同过滤算法、基于K-means聚类的协同过滤算法相比较。在MovieLens数据集上的实验结果表明,该算法的平均绝对误差(MAE)较其他算法降低了大约12%,准确性(Precision)提高了7%。 相似文献
18.
首先介绍单视角谱聚类算法的原理,在此基础上,研究谱聚类在多个视角框架下的应用,同时也研究了多视角谱聚类算法在大数据中的应用,最后对多视角谱聚类算法研究方向进行总结. 相似文献
19.
《中国科学技术大学学报》2016,(1)
随着大规模网络数据的增加,可扩展性成为推荐系统的一个关键因素,为此提出一种基于并行化谱聚类的协同推荐算法.首先通过并行化改进的谱聚类方法对项目进行聚类;然后在基于用户的协同推荐算法基础上,结合已聚类的项目打分信息,提出一种改进的相似用户计算方法,并进行推荐;最后在数据集上进行测试.结果表明,该算法可以有效降低时间复杂度,推荐精确度和推荐效率也有显著提高. 相似文献
20.
传统图像分割方法大都存在分割速度低下、过度分割等缺点.针对上述问题,提出一种新的彩色图像区域分割算法.这种方法首先将图像转化至L*a*b*空间,并划分为子块,抽取图像子块的颜色、纹理和位置特征组成子块的特征向量,然后运用减法聚类,获得聚类簇数和初始蔟中心,最后利用改进的K均值算法在像素点特征空间进行聚类,进而分割图像成区域.实验结果表明这种新方法具有分割效率高、分割效果理想等优点. 相似文献